Part Number Hot Search : 
JANTXV2 2SB1323 ADR291 INTERSIL 106MBAAQ A680M A1909 MP6922A
Product Description
Full Text Search
 

To Download XC3S1000-5TQG144C Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 0
R
Spartan-3 FPGA Family: Complete Data Sheet
0 0
DS099 January 17, 2005
This document includes all four modules of the SpartanTM-3 FPGA data sheet.
Module 1: Introduction and Ordering Information
DS099-1 (v1.4) January 17, 2005 6 pages * * * * * * Introduction Features Architectural Overview Product Availability User I/O Chart Ordering Information
Module 3: DC and Switching Characteristics
DS099-3 (v1.5) December 17, 2004 39 pages * DC Electrical Characteristics - Absolute Maximum Ratings - Supply Voltage Specifications - Recommended Operating Conditions - DC Characteristics Switching Characteristics - I/O Timing - Internal Logic Timing - DCM Timing - Configuration and JTAG Timing
*
Module 2: Functional Description
DS099-2 (v1.3) August 24, 2004 40 pages * IOBs - IOB Overview - SelectIOTM Signal Standards CLB Overview Block RAM Dedicated Multipliers Digital Clock Manager (DCM) - Clock Network Configuration
Module 4: Pinout Descriptions
DS099-4 (v1.6) January 17, 2005 112 pages * * * Pin Descriptions - Pin Behavior During Configuration Package Overview Pinout Tables - Footprints
* * * * *
IMPORTANT NOTE: The Spartan-3 FPGA data sheet is created and published in separate modules. This complete version is provided for easy downloading and searching of the complete document. Page, figure, and table numbers begin at 1 for each module, and each module has its own Revision History at the end. Use the PDF "Bookmarks" for easy navigation in this volume.
(c) 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099 January 17, 2005
www.xilinx.com
06
R
Spartan-3 FPGA Family: Introduction and Ordering Information
0
DS099-1 (v1.4) January 17, 2005
0
Preliminary Product Specification Three power rails: for core (1.2V), I/Os (1.2V to 3.3V), and auxiliary purposes (2.5V) SelectIOTM signaling - Up to 784 I/O pins - 622 Mb/s data transfer rate per I/O - 18 single-ended signal standards - 6 differential I/O standards including LVDS, RSDS - Termination by Digitally Controlled Impedance - Signal swing ranging from 1.14V to 3.45V - Double Data Rate (DDR) support Logic resources - Abundant logic cells with shift register capability - Wide multiplexers - Fast look-ahead carry logic - Dedicated 18 x 18 multipliers - JTAG logic compatible with IEEE 1149.1/1532 SelectRAMTM hierarchical memory - Up to 1,872 Kbits of total block RAM - Up to 520 Kbits of total distributed RAM Digital Clock Manager (up to four DCMs) - Clock skew elimination - Frequency synthesis - High resolution phase shifting Eight global clock lines and abundant routing Fully supported by Xilinx ISE development system - Synthesis, mapping, placement and routing MicroBlazeTM processor, PCI, and other cores Pb-free packaging options Low-power Spartan-3L Family and Automotive Spartan-3 XA Family options
Maximum Differential I/O Pairs 56 76 116 175 221 270 312 344
Introduction
The SpartanTM-3 family of Field-Programmable Gate Arrays is specifically designed to meet the needs of high volume, cost-sensitive consumer electronic applications. The eight-member family offers densities ranging from 50,000 to five million system gates, as shown in Table 1. The Spartan-3 family builds on the success of the earlier Spartan-IIE family by increasing the amount of logic resources, the capacity of internal RAM, the total number of I/Os, and the overall level of performance as well as by improving clock management functions. Numerous enhancements derive from state-of-the-art VirtexTM-II technology. These Spartan-3 enhancements, combined with advanced process technology, deliver more functionality and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry. Because of their exceptionally low cost, Spartan-3 FPGAs are ideally suited to a wide range of consumer electronics applications, including broadband access, home networking, display/projection and digital television equipment. The Spartan-3 family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary, an impossibility with ASICs. *
-
*
*
*
* * * * *
Features
Very low cost, high-performance logic solution for high-volume, consumer-oriented applications - Densities as high as 74,880 logic cells Table 1: Summary of Spartan-3 FPGA Attributes
CLB Array (One CLB = Four Slices) System Equivalent Gates Logic Cells Rows Columns Total CLBs 50K 200K 400K 1M 1.5M 2M 4M 5M 1,728 4,320 8,064 17,280 29,952 46,080 62,208 74,880 16 24 32 48 64 80 96 104 12 20 28 40 52 64 72 80 192 480 896 1,920 3,328 5,120 6,912 8,320
*
Device XC3S502 XC3S2002 XC3S4002 XC3S10002, 3 XC3S15003 XC3S2000 XC3S40003 XC3S5000
Distributed RAM (bits1) 12K 30K 56K 120K 208K 320K 432K 520K
Block RAM (bits1) 72K 216K 288K 432K 576K 720K 1,728K 1,872K
Dedicated Multipliers 4 12 16 24 32 40 96 104
DCMs 2 4 4 4 4 4 4 4
Maximum User I/O 124 173 264 391 487 565 712 784
Notes: 1. By convention, one Kb is equivalent to 1,024 bits. 2. These devices are available in Xilinx Automotive versions as described in DS314: Spartan-3 Automotive XA FPGA Family. 3. XC3S1000, XC3S1500, and XC3S4000 are also available in lower static power versions as described in DS313: Spartan-3L Low Power FPGA Family.
(c) 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-1 (v1.4) January 17, 2005 Preliminary Product Specification
www.xilinx.com
1
Spartan-3 FPGA Family: Introduction and Ordering Information
R
Architectural Overview
The Spartan-3 family architecture consists of five fundamental programmable functional elements: * Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to implement logic and storage elements that can be used as flip-flops or latches. CLBs can be programmed to perform a wide variety of logical functions as well as to store data. Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Twenty-four different signal standards, including seven high-performance differential standards, are available as shown in Table 2. Double Data-Rate (DDR) registers are included. The Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board designs. Block RAM provides data storage in the form of 18-Kbit dual-port blocks. * * Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product. Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase shifting clock signals.
*
These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. The XC3S50 has a single column of block RAM embedded in the array. Those devices ranging from the XC3S200 to the XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 devices have four RAM columns. Each column is made up of several 18K-bit RAM blocks; each block is associated with a dedicated multiplier. The DCMs are positioned at the ends of the outer block RAM columns. The Spartan-3 family features a rich network of traces and switches that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.
*
DS099-1_01_032703
Notes: 1. The two additional block RAM columns of the XC3S4000 and XC3S5000 devices are shown with dashed lines. The XC3S50 has only the block RAM column on the far left.
Figure 1: Spartan-3 Family Architecture
2 6
www.xilinx.com
DS099-1 (v1.4) January 17, 2005 Preliminary Product Specification
R
Spartan-3 FPGA Family: Introduction and Ordering Information which includes the XCF00S PROMs for serial configuration and the higher density XCF00P PROMs for parallel or serial configuration.
Configuration
Spartan-3 FPGAs are programmed by loading configuration data into robust static memory cells that collectively control all functional elements and routing resources. Before powering on the FPGA, configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes: Master Parallel, Slave Parallel, Master Serial, Slave Serial, and Boundary Scan (JTAG). The Master and Slave Parallel modes use an 8-bit wide SelectMAPTM port. The recommended memory for storing the configuration data is the low-cost Xilinx Platform Flash PROM family, Standard Category
Single-Ended
I/O Capabilities
The SelectIO feature of Spartan-3 devices supports 18 single-ended standards and 6 differential standards as listed in Table 2. Many standards support the DCI feature, which uses integrated terminations to eliminate unwanted signal reflections. Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.
Table 2: Signal Standards Supported by the Spartan-3 Family Description Gunning Transceiver Logic High-Speed Transceiver Logic VCCO (V) N/A 1.5 1.8 Class Terminated Plus HSTL I III I II III LVCMOS Low-Voltage CMOS 1.2 1.5 1.8 2.5 3.3 LVTTL PCI SSTL Low-Voltage Transistor-Transistor Logic Peripheral Component Interconnect Stub Series Terminated Logic 3.3 3.0 1.8 2.5
Differential
Symbol GTL GTLP HSTL_I HSTL_III HSTL_I_18 HSTL_II_18 HSTL_III_18 LVCMOS12 LVCMOS15 LVCMOS18 LVCMOS25 LVCMOS33 LVTTL PCI33_3 SSTL18_I SSTL18_II SSTL2_I SSTL2_II
DCI Option Yes Yes Yes Yes Yes Yes Yes No Yes Yes Yes Yes No No Yes No Yes Yes
GTL
N/A N/A N/A N/A N/A N/A 33 MHz N/A (6.7 mA) N/A (13.4 mA) I II
LDT (ULVDS) LVDS
Lightning Data Transport (HyperTransportTM) Low-Voltage Differential Signaling
2.5
N/A Standard Bus Extended Mode
LDT_25 LVDS_25 BLVDS_25 LVDSEXT_25 LVPECL_25 RSDS_25
No Yes No Yes No No
LVPECL RSDS
Low-Voltage Positive Emitter-Coupled Logic Reduced-Swing Differential Signaling
2.5 2.5
N/A N/A
DS099-1 (v1.4) January 17, 2005 Preliminary Product Specification
www.xilinx.com
3
Spartan-3 FPGA Family: Introduction and Ordering Information Table 3: Spartan-3 I/O Chart
Available User I/Os and Differential (Diff) I/O Pairs VQ100 VQG100 Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 User 63 63 Diff 29 29 CP132 CPG132 User 89 Diff 44 TQ144 TQG144 User 97 97 97 Diff 46 46 46 PQ208 PQG208 User 124 141 141 Diff 56 62 62 FT256 FTG256 User 173 173 173 Diff 76 76 76 FG320 FGG320 User 221 221 221 Diff 100 100 100 FG456 FGG456 User 264 333 333 333 Diff 116 149 149 149 FG676 FGG676 User 391 487 489 489 Diff 175 221 221 221 FG900 FGG900 User 565 633 633 Diff 270 300 300 FG1156 FGG1156 User 712 784 Diff 312 344
R
Notes: 1. All device options listed in a given package column are pin-compatible. 2. User = User I/O pins. Diff = Differential I/O pairs.
Package Marking
Mask Revision Code Fabrication Code F = UMC 8D (200 mm) G = UMC 12A (300 mm)
R
R
Device Type Package Speed Grade Temperature Range
SPARTAN XC3S50TM PQ208AFQ0350 xxxxxxxxx 4C
Process Technology Q = 90 nm Date Code Lot Code
ds099-1_03_011705
4 6
www.xilinx.com
DS099-1 (v1.4) January 17, 2005 Preliminary Product Specification
R
Spartan-3 FPGA Family: Introduction and Ordering Information
Ordering Information
Spartan-3 FPGAs are available in both standard and Pb-free packaging options for all device/package combinations. The Pb-free packages include a special 'G' character in the ordering code.
Standard Packaging
Example: XC3S50 -4 PQ 208 C
Device Type Speed Grade Package Type Temperature Range: C = Commercial (TJ = 0C to 85C) I = Industrial (TJ = -40C to 100C) Number of Pins
DS099-1_02a_071304
Pb-Free Packaging
For additional information on Pb-free packaging, see XAPP427: "Implementation and Solder Reflow Guidelines for Pb-Free Packages".
Example: XC3S50 -4 PQ G 208 C
Device Type Speed Grade Package Type Temperature Range: C = Commercial (TJ = 0C to 85C) I = Industrial (TJ = -40C to 100C) Number of Pins Pb-free
DS099-1_02b_071304
Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
Speed Grade -4 Standard Performance -5 High Performance1
Package Type / Number of Pins VQ(G)100 100-pin Very Thin Quad Flat Pack (VQFP) CP(G)132 132-pin Chip-Scale Package (CSP) TQ(G)144 144-pin Thin Quad Flat Pack (TQFP) PQ(G)208 208-pin Plastic Quad Flat Pack (PQFP) FT(G)256 256-ball Fine-Pitch Thin Ball Grid Array (FTBGA) FG(G)320 320-ball Fine-Pitch Ball Grid Array (FBGA) FG(G)456 456-ball Fine-Pitch Ball Grid Array (FBGA) FG(G)676 676-ball Fine-Pitch Ball Grid Array (FBGA) FG(G)900 900-ball Fine-Pitch Ball Grid Array (FBGA) FG(G)1156 1156-ball Fine-Pitch Ball Grid Array (FBGA)
Temperature Range (TJ ) C Commercial (0C to 85C) I Industrial (-40C to 100C)
Notes: 1. The -5 speed grade is exclusively available in the Commercial temperature range.
DS099-1 (v1.4) January 17, 2005 Preliminary Product Specification
www.xilinx.com
5
Spartan-3 FPGA Family: Introduction and Ordering Information
R
Revision History
Date 04/11/03 04/24/03 12/24/03 07/13/04 01/17/05 Version No. 1.0 1.1 1.2 1.3 1.4 Initial Xilinx release. Updated block RAM, DCM, and multiplier counts for the XC3S50. Added the FG320 package. Added information on Pb-free packaging options. Referenced Spartan-3L Low Power FPGA and Spartan-3 XA Automotive FPGA families in Table 1. Added XC3S50CP132, XC3S2000FG456, XC3S4000FG676 options to Table 3. Updated Package Marking to show mask revision code, fabrication facility code, and process technology code. Description
The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1) DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2) DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3) DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4) DS313, Spartan-3L Low Power FPGA Family DS314-1, Spartan-3 XA Automotive FPGA Family
6 6
www.xilinx.com
DS099-1 (v1.4) January 17, 2005 Preliminary Product Specification
040
R
Spartan-3 FPGA Family: Functional Description
0 0
DS099-2 (v1.3) August 24, 2004
Preliminary Product Specification
IOBs
IOB Overview
The Input/Output Block (IOB) provides a programmable, bidirectional interface between an I/O pin and the FPGA's internal logic. A simplified diagram of the IOB's internal structure appears in Figure 1. There are three main signal paths within the IOB: the output path, input path, and 3-state path. Each path has its own pair of storage elements that can act as either registers or latches. For more information, see the Storage Element Functions section. The three main signal paths are as follows: * The input path carries data from the pad, which is bonded to a package pin, through an optional programmable delay element directly to the I line. After the delay element, there are alternate routes through a pair of storage elements to the IQ1 and IQ2 lines. The IOB outputs I, IQ1, and IQ2 all lead to the FPGA's internal logic. The delay element can be set to ensure a hold time of zero. The output path, starting with the O1 and O2 lines, carries data from the FPGA's internal logic through a multiplexer and then a three-state driver to the IOB pad. In addition to this direct path, the multiplexer provides the option to insert a pair of storage elements. The 3-state path determines when the output driver is high impedance. The T1 and T2 lines carry data from the FPGA's internal logic through a multiplexer to the output driver. In addition to this direct path, the multiplexer provides the option to insert a pair of storage elements. All signal paths entering the IOB, including those associated with the storage elements, have an inverter option. Any inverter placed on these paths is automatically absorbed into the IOB.
*
Storage Element Functions
There are three pairs of storage elements in each IOB, one pair for each of the three paths. It is possible to configure each of these storage elements as an edge-triggered D-type flip-flop (FD) or a level-sensitive latch (LD). The storage-element-pair on either the Output path or the Three-State path can be used together with a special multiplexer to produce Double-Data-Rate (DDR) transmission. This is accomplished by taking data synchronized to the clock signal's rising edge and converting them to bits synchronized on both the rising and the falling edge. The combination of two registers and a multiplexer is referred to as a Double-Data-Rate D-type flip-flop (FDDR). See Double-Data-Rate Transmission, page 3 for more information. The signal paths associated with the storage element are described in Table 1.
*
*
Table 1: Storage Element Signal Description
Storage Element Signal D Q CK CE SR REV
Description Data input Data output Clock input Clock Enable input Set/Reset Reverse
Function Data at this input is stored on the active edge of CK enabled by CE. For latch operation when the input is enabled, data passes directly to the output Q. The data on this output reflects the state of the storage element. For operation as a latch in transparent mode, Q will mirror the data at D. A signal's active edge on this input with CE asserted, loads data into the storage element. When asserted, this input enables CK. If not connected, CE defaults to the asserted state. Forces storage element into the state specified by the SRHIGH/SRLOW attributes. The SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not. Used together with SR. Forces storage element into the state opposite from what SR does.
(c) 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
1
Spartan-3 FPGA Family: Functional Description
R
T T1
D CE CK SR
Q
TFF1
REV DDR MUX
TCE T2
D CE CK SR
Q TFF2
REV
Three-state Path
O1
D CE
Q
OFF1
VCCO
OTCLK1
CK SR
Pull-Up REV
DDR MUX
ESD
I/O Pin
OCE O2 D CE OTCLK2 CK SR Q OFF2
Programmable Output Driver
DCI
PullDown
ESD
REV
Keeper Latch
Output Path
IQ1 I D CE ICLK1 ICE CK SR Q IFF1 Fixed Delay
LVCMOS, LVTTL, PCI
Single-ended Standards using VREF VREF Pin
REV Differential Standards
IQ2 D CE ICLK2 SR REV Input Path Note: All IOB signals communicating with the FPGA's internal logic have the option of inverting polarity. CK SR Q IFF2
I/O Pin from Adjacent IOB
REV
DS099-2_01_082104
Figure 1: Simplified IOB Diagram
2 40 www.xilinx.com DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description path and ICE does the same for the register pair on the input path. The Set/Reset (SR) line entering the IOB is common to all six registers, as is the Reverse (REV) line. Each storage element supports numerous options in addition to the control over signal polarity described in the IOB Overview section. These are described in Table 2.
According to Figure 1, the clock line OTCLK1 connects the CK inputs of the upper registers on the output and three-state paths. Similarly, OTCLK2 connects the CK inputs for the lower registers on the output and three-state paths. The upper and lower registers on the input path have independent clock lines: ICLK1 and ICLK2. The enable line OCE connects the CE inputs of the upper and lower registers on the output path. Similarly, TCE connects the CE inputs for the register pair on the three-state Table 2: Storage Element Options Option Switch FF/Latch SYNC/ASYNC SRHIGH/SRLOW Function
Specificity Independent for each storage element. Independent for each storage element. Independent for each storage element, except when using FDDR. In the latter case, the selection for the upper element (OFF1 or TFF2) will apply to both elements. Independent for each storage element, except when using FDDR. In the latter case, selecting INIT0 for one element applies to both elements (even though INIT1 is selected for the other).
Chooses between an edge-sensitive flip-flop or a level-sensitive latch Determines whether SR is synchronous or asynchronous Determines whether SR acts as a Set, which forces the storage element to a logic "1" (SRHIGH) or a Reset, which forces a logic "0" (SRLOW). In the event of a Global Set/Reset, after configuration or upon activation of the GTS net, this switch decides whether to set or reset a storage element. By default, choosing SRLOW also selects INIT0; choosing SRHIGH also selects INIT1.
INIT1/INIT0
Double-Data-Rate Transmission
Double-Data-Rate (DDR) transmission describes the technique of synchronizing signals to both the rising and falling edges of the clock signal. Spartan-3 devices use register-pairs in all three IOB paths to perform DDR operations. The pair of storage elements on the IOB's Output path (OFF1 and OFF2), used as registers, combine with a special multiplexer to form a DDR D-type flip-flop (FDDR). This primitive permits DDR transmission where output data bits are synchronized to both the rising and falling edges of a clock. It is possible to access this function by placing either an FDDRRSE or an FDDRCPE component or symbol into the design. DDR operation requires two clock signals (50% duty cycle), one the inverted form of the other. These signals trigger the two registers in alternating fashion, as shown in Figure 2. Commonly, the Digital Clock Manager (DCM) generates the two clock signals by mirroring an incoming signal, then shifting it 180 degrees. This approach ensures minimal skew between the two signals.
The storage-element-pair on the Three-State path (TFF1 and TFF2) can also be combined with a local multiplexer to form an FDDR primitive. This permits synchronizing the output enable to both the rising and falling edges of a clock. This DDR operation is realized in the same way as for the output path. The storage-element-pair on the input path (IFF1 and IFF2) allows an I/O to receive a DDR signal. An incoming DDR clock signal triggers one register and the inverted clock signal triggers the other register. In this way, the registers take turns capturing bits of the incoming DDR data signal. Aside from high bandwidth data transfers, DDR can also be used to reproduce, or "mirror", a clock signal on the output. This approach is used to transmit clock and data signals together. A similar approach is used to reproduce a clock signal at multiple outputs. The advantage for both approaches is that skew across the outputs will be minimal.
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
3
Spartan-3 FPGA Family: Functional Description
R
DCM 180 0 FDDR D1 Q1 CLK1
of the signal standard selected. The presence of diodes limits the ability of Spartan-3 I/Os to tolerate high signal voltages. The VIN absolute maximum rating in Table 1 in Module 3: DC and Switching Characteristics specifies the voltage range that I/Os can tolerate.
Slew Rate Control and Drive Strength
Two options, FAST and SLOW, control the output slew rate. The FAST option supports output switching at a high rate. The SLOW option reduces bus transients. These options are only available when using one of the LVCMOS or LVTTL standards, which also provide up to seven different levels of current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the appropriate drive strength level is yet another means to minimize bus transients. Table 3 shows the drive strengths that the LVCMOS and LVTTL standards support. The Fast option is indicated by appending an "F" attribute after the output buffer symbol OBUF or the bidirectional buffer symbol IOBUF. The Slow option appends an "S" attribute. The drive strength in milliamperes follows the slew rate attribute. For example, OBUF_LVCMOS18_S_6 or IOBUF_LVCMOS25_F_16.
DS099-2_02_070303
DDR MUX
Q
D2 Q2 CLK2
Figure 2: Clocking the DDR Register
Table 3: Programmable Output Drive Current Signal Standard LVCMOS12 LVCMOS15 LVCMOS18 LVCMOS25 LVCMOS33 LVTTL Current Drive (mA) 2 4 6 8 12 16 24 -
Pull-Up and Pull-Down Resistors
The optional pull-up and pull-down resistors are intended to establish High and Low levels, respectively, at unused I/Os. The pull-up resistor optionally connects each IOB pad to VCCO. A pull-down resistor optionally connects each pad to GND. These resistors are placed in a design using the PULLUP and PULLDOWN symbols in a schematic, respectively. They can also be instantiated as components, set as constraints or passed as attributes in HDL code. These resistors can also be selected for all unused I/O using the Bitstream Generator (BitGen) option UnusedPin. A Low logic level on HSWAP_EN activates the pull-up resistors on all I/Os during configuration.
Boundary-Scan Capability
All Spartan-3 IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. See Boundary-Scan (JTAG) Mode, page 36 for more information.
Keeper Circuit
Each I/O has an optional keeper circuit that retains the last logic level on a line after all drivers have been turned off. This is useful to keep bus lines from floating when all connected drivers are in a high-impedance state. This function is placed in a design using the KEEPER symbol. Pull-up and pull-down resistors override the keeper circuit.
SelectIO Signal Standards
The IOBs support 17 different single-ended signal standards, as listed in Table 4. Furthermore, the majority of IOBs can be used in specific pairs supporting any of six differential signal standards, as shown in Table 5. The desired standard is selected by placing the appropriate I/O library symbol or component into the FPGA design. For example, the symbol named IOBUF_LVCMOS15_F_8 represents a bidirectional I/O to which the 1.5V LVCMOS signal standard has been assigned. The slew rate and current drive are set to Fast and 8 mA, respectively. Together with placing the appropriate I/O symbol, two externally applied voltage levels, VCCO and VREF select the desired signal standard. The VCCO lines provide current to the output driver. The voltage on these lines determines the
ESD Protection
Clamp diodes protect all device pads against damage from Electro-Static Discharge (ESD) as well as excessive voltage transients. Each I/O has two clamp diodes: One diode extends P-to-N from the pad to VCCO and a second diode extends N-to-P from the pad to GND. During operation, these diodes are normally biased in the off state. These clamp diodes are always connected to the pad, regardless
4 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description Table 4: Single-Ended I/O Standards (Values in Volts)
VCCO Signal Standard SSTL2_I SSTL2_II For Outputs 2.5 2.5 For Inputs VREF for Inputs(1) 1.25 1.25 Board Termination Voltage (VTT) 1.25 1.25
output voltage swing for all standards except GTL and GTLP. All single-ended standards except the LVCMOS, LVTTL, and PCI varieties require a Reference Voltage (VREF) to bias the input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use such a signal standard, a few specifically reserved I/O pins on the same bank automatically convert to VREF inputs. When using one of the LVCMOS standards, these pins remain I/Os because the VCCO voltage biases the input-switching threshold, so there is no need for VREF. Select the VCCO and VREF levels to suit the desired single-ended standard according to Table 4. Differential standards employ a pair of signals, one the opposite polarity of the other. The noise canceling (e.g., Common-Mode Rejection) properties of these standards permit exceptionally high data transfer rates. This section introduces the differential signaling capabilities of Spartan-3 devices. Each device-package combination designates specific I/O pairs that are specially optimized to support differential standards. A unique "L-number", part of the pin name, identifies the line-pairs associated with each bank (see Module 4: Pinout Descriptions). For each pair, the letters "P" and "N" designate the true and inverted lines, respectively. For example, the pin names IO_L43P_7 and IO_L43N_7 indicate the true and inverted lines comprising the line pair L43 on Bank 7. The VCCO lines provide current to the outputs. The VREF lines are not used. Select the VCCO level to suit the desired differential standard according to Table 5. Table 4: Single-Ended I/O Standards (Values in Volts)
VCCO Signal Standard GTL GTLP HSTL_I HSTL_III HSTL_I_18 HSTL_II_18 HSTL_III_18 LVCMOS12 LVCMOS15 LVCMOS18 LVCMOS25 LVCMOS33 LVTTL PCI33_3 SSTL18_I For Outputs Note 2 Note 2 1.5 1.5 1.8 1.8 1.8 1.2 1.5 1.8 2.5 3.3 3.3 3.0 1.8 For Inputs Note 2 Note 2 1.2 1.5 1.8 2.5 3.3 3.3 3.0 VREF for Inputs(1) 0.8 1 0.75 0.9 0.9 0.9 1.1 0.9 Board Termination Voltage (VTT) 1.2 1.5 0.75 1.5 0.9 0.9 1.8 0.9
Notes: 1. Banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using VREF. 2. The VCCO level used for the GTL and GTLP standards must be no lower than the termination voltage (VTT), nor can it be lower than the voltage at the I/O pad. 3. See Table 6 for a listing of the single-ended DCI standards.
Table 5: Differential I/O Standards
VCCO (Volts) Signal Standard LDT_25 (ULVDS_25) LVDS_25 BLVDS_25 LVDSEXT_25 LVPECL_25 RSDS_25 For Outputs 2.5 2.5 2.5 2.5 2.5 2.5 For Inputs VREF for Inputs (Volts) -
Notes: 1. See Table 6 for a listing of the differential DCI standards.
The need to supply VREF and VCCO imposes constraints on which standards can be used in the same bank. See The Organization of IOBs into Banks section for additional guidelines concerning the use of the VCCO and VREF lines.
Digitally Controlled Impedance (DCI)
When the round-trip delay of an output signal -- i.e., from output to input and back again -- exceeds rise and fall times, it is common practice to add termination resistors to the line carrying the signal. These resistors effectively match the impedance of a device's I/O to the characteristic impedance of the transmission line, thereby preventing reflections that adversely affect signal integrity. However, with the high I/O counts supported by modern devices, adding resistors requires significantly more components and board area. Furthermore, for some packages -- e.g., ball grid arrays -- it may not always be possible to place resistors close to pins. DCI answers these concerns by providing two kinds of on-chip terminations: Parallel terminations make use of an integrated resistor network. Series terminations result from controlling the impedance of output drivers. DCI actively adjusts both parallel and series terminations to accurately match the characteristic impedance of the transmission line. This adjustment process compensates for differences in I/O impedance that can result from normal variation in the ambient temperature, the supply voltage and the manufac-
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
5
Spartan-3 FPGA Family: Functional Description turing process. When the output driver turns off, the series termination, by definition, approaches a very high impedance; in contrast, parallel termination resistors remain at the targeted values. DCI is available only for certain I/O standards, as listed in Table 6. DCI is selected by applying the appropriate I/O Table 6: DCI I/O Standards VCCO (V) Category of Signal Standard Single-Ended Gunning Transceiver Logic High-Speed Transceiver Logic GTL_DCI GTLP_DCI HSTL_I_DCI HSTL_III_DCI HSTL_I_DCI_18 HSTL_II_DCI_18 HSTL_III_DCI_18 Low-Voltage CMOS LVDCI_15 LVDCI_18 LVDCI_25 LVDCI_33 LVDCI_DV2_15 LVDCI_DV2_18 LVDCI_DV2_25 LVDCI_DV2_33 Stub Series Terminated Logic SSTL18_I_DCI SSTL2_I_DCI SSTL2_II_DCI Differential Low-Voltage Differential Signalling LVDS_25_DCI LVDSEXT_25_DCI 2.5 2.5 2.5 2.5 None Split on each line of pair 1.2 1.5 1.5 1.5 1.8 1.8 1.8 1.5 1.8 2.5 3.3 1.5 1.8 2.5 3.3 1.8 2.5 2.5 1.2 1.5 1.5 1.5 1.8 1.8 1.8 1.5 1.8 2.5 3.3 1.5 1.8 2.5 3.3 1.8 2.5 2.5 0.8 1.0 0.75 0.9 0.9 0.9 1.1 0.9 1.25 1.25 25-Ohm driver 25-Ohm driver Split with 25-Ohm driver Split Controlled driver with half-impedance None None None Split None Controlled impedance driver Single None Split Single Split Single Single Signal Standard For Outputs For Inputs VREF for Inputs (V) Termination Type At Output At Input
R
standard extensions to symbols or components. There are five basic ways to configure terminations, as shown in Table 7. The DCI I/O standard determines which of these terminations is put into effect.
Notes: 1. Bank 5 of any Spartan-3 device in a VQ100 or TQ144 package does not support DCI signal standards.
6 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 7: DCI Terminations Termination Controlled impedance output driver
IOB R Z0
Schematic(1)
I/O Standards LVDCI_15 LVDCI_18 LVDCI_25 LVDCI_33
Controlled output driver with half impedance
IOB R/2 Z0
LVDCI_DV2_15 LVDCI_DV2_18 LVDCI_DV2_25 LVDCI_DV2_33
Single resistor
IOB
VCCO
R
Z0
GTL_DCI GTLP_DCI HSTL_III_DCI(2) HSTL_III_DCI_18(2)
Split resistors
IOB
VCCO
2R
Z0
HSTL_I_DCI(2) HSTL_I_DCI_18(2) HSTL_II_DCI_18 LVDS_25_DCI LVDSEXT_25_DCI
2R
Split resistors with output driver impedance fixed to 25
IOB 25
VCCO
SSTL18_I_DCI(3) SSTL2_I_DCI(3) SSTL2_II_DCI
Z0
2R
2R
Notes: 1. The value of R is equivalent to the characteristic impedance of the line connected to the I/O. It is also equal to half the value of RREF for the DV2 standards and RREF for all other DCI standards. 2. For DCI using HSTL Classes I and III, terminations only go into effect at inputs (not at outputs). 3. For DCI using SSTL Class I, the split termination only goes into effect at inputs (not at outputs).
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
7
Spartan-3 FPGA Family: Functional Description The DCI feature operates independently for each of the device's eight banks. Each bank has an "N" reference pin (VRN) and a "P" reference pin, (VRP), to calibrate driver and termination resistance. Only when using a DCI standard on a given bank do these two pins function as VRN and VRP. When not using a DCI standard, the two pins function as user I/Os. As shown in Figure 3, add an external reference resistor to pull the VRN pin up to VCCO and another reference resistor to pull the VRP pin down to GND. Both resistors have the same value -- commonly 50 Ohms -- with one-percent tolerance, which is either the characteristic impedance of the line or twice that, depending on the DCI standard in use. Standards having a symbol name that contains the letters "DV2" use a reference resistor value that is twice the line impedance. DCI adjusts the output driver impedance to match the reference resistors' value or half that, according to the standard. DCI always adjusts the on-chip termination resistors to directly match the reference resistors' value.
R
Spartan-3 devices in these packages support eight independent VCCO supplies.
Bank 0 Bank 7
Bank 1 Bank 2
Bank 6
Bank 5
Bank 4
DS099-2_03_082104
Figure 4: Spartan-3 I/O Banks (top view) In contrast, the 144-pin Thin Quad Flat Pack (TQ144) package ties VCCO together internally for the pair of banks on each side of the device. For example, the VCCO Bank 0 and the VCCO Bank 1 lines are tied together. The interconnected bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3 devices in the TQ144 package support four independent VCCO supplies.
One of eight I/O Banks
VCCO RREF (1%)
VRN VRP RREF (1%)
Spartan-3 Compatibility
DS099-2_04_082104
Figure 3: Connection of Reference Resistors (RREF) The rules guiding the use of DCI standards on banks are as follows: 1. No more than one DCI I/O standard with a Single Termination is allowed per bank. 2. No more than one DCI I/O standard with a Split Termination is allowed per bank. 3. Single Termination, Split Termination, ControlledImpedance Driver, and Controlled-Impedance Driver with Half Impedance can co-exist in the same bank. See also The Organization of IOBs into Banks, page 8.
Within the Spartan-3 family, all devices are pin-compatible by package. When the need for future logic resources outgrows the capacity of the Spartan-3 device in current use, a larger device in the same package can serve as a direct replacement. Larger devices may add extra VREF and VCCO lines to support a greater number of I/Os. In the larger device, more pins can convert from user I/Os to VREF lines. Also, additional VCCO lines are bonded out to pins that were "not connected" in the smaller device. Thus, it is important to plan for future upgrades at the time of the board's initial design by laying out connections to the extra pins. The Spartan-3 family is not pin-compatible with any previous Xilinx FPGA family.
Rules Concerning Banks
When assigning I/Os to banks, it is important to follow the following VCCO rules: 1. Leave no VCCO pins unconnected on the FPGA. 2. Set all VCCO lines associated with the (interconnected) bank to the same voltage level. 3. The VCCO levels used by all standards assigned to the I/Os of the (interconnected) bank(s) must agree. The Xilinx development software checks for this. Tables 4, 5, and 6 describe how different standards use the VCCO supply.
The Organization of IOBs into Banks
IOBs are allocated among eight banks, so that each side of the device has two banks, as shown in Figure 4. For all packages, each bank has independent VREF lines. For example, VREF Bank 3 lines are separate from the VREF lines going to all other banks. For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine Pitch Ball Grid Array (FG) packages, each bank has dedicated VCCO lines. For example, the VCCO Bank 7 lines are separate from the VCCO lines going to all other banks. Thus,
8 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
Bank 3
R
Spartan-3 FPGA Family: Functional Description
4. If none of the standards assigned to the I/Os of the (interconnected) bank(s) use VCCO, tie all associated VCCO lines to 2.5V. 5. In general, apply 2.5V to VCCO Bank 4 from power-on to the end of configuration. Apply the same voltage to VCCO Bank 5 during parallel configuration or a Readback operation. For information on how to program the FPGA using 3.3V signals and power, see the 3.3V-Tolerant Configuration Interface section. If any of the standards assigned to the Inputs of the bank use VREF, then observe the following additional rules: 1. Leave no VREF pins unconnected on any bank. 2. Set all VREF lines associated with the bank to the same voltage level. 3. The VREF levels used by all standards assigned to the Inputs of the bank must agree. The Xilinx development software checks for this. Tables 4 and 6 describe how different standards use the VREF supply. If none of the standards assigned to the Inputs of a bank use VREF for biasing input switching thresholds, all associated VREF pins function as User I/Os.
The I/Os During Power-On, Configuration, and User Mode
With no power applied to the FPGA, all I/Os are in a high-impedance state. The VCCINT (1.2V), VCCAUX (2.5V), and VCCO supplies may be applied in any order. Before power-on can finish, VCCINT, VCCO Bank 4, and VCCAUX must have reached their respective minimum recommended operating levels (see Table 2 in Module 3: DC and Switching Characteristics). At this time, all I/O drivers also will be in a high-impedance state. VCCO Bank 4, VCCINT, and VCCAUX serve as inputs to the internal Power-On Reset circuit (POR). A Low level applied to the HSWAP_EN input enables pull-up resistors on User I/Os from power-on throughout configuration. A High level on HSWAP_EN disables the pull-up resistors, allowing the I/Os to float. As soon as power is applied, the FPGA begins initializing its configuration memory. At the same time, the FPGA internally asserts the Global Set-Reset (GSR), which asynchronously resets all IOB storage elements to a Low state. Upon the completion of initialization, INIT_B goes High, sampling the M0, M1, and M2 inputs to determine the configuration mode. At this point, the configuration data is loaded into the FPGA. The I/O drivers remain in a high-impedance state (with or without pull-up resistors, as determined by the HSWAP_EN input) throughout configuration. The Global Three State (GTS) net is released during Start-Up, marking the end of configuration and the beginning of design operation in the User mode. At this point, those I/Os to which signals have been assigned go active while all unused I/Os remain in a high-impedance state. The release of the GSR net, also part of Start-up, leaves the IOB registers in a Low state by default, unless the loaded design reverses the polarity of their respective RS inputs. In User mode, all internal pull-up resistors on the I/Os are disabled and HSWAP_EN becomes a "don't care" input. If it is desirable to have pull-up or pull-down resistors on I/Os carrying signals, the appropriate symbol -- e.g., PULLUP, PULLDOWN -- must be placed at the appropriate pads in the design. The Bitstream Generator (Bitgen) option UnusedPin available in the Xilinx development software determines whether unused I/Os collectively have pull-up resistors, pull-down resistors, or no resistors in User mode.
Exceptions to Banks Supporting I/O Standards
Bank 5 of any Spartan-3 device in a VQ100 or TQ144 package does not support DCI signal standards. In this case, bank 5 has neither VRN nor VRP pins. Furthermore, banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using VREF (see Table 4). In this case, the two banks do not have any VREF pins.
Supply Voltages for the IOBs
Three different supplies power the IOBs: 1. The VCCO supplies, one for each of the FPGA's I/O banks, power the output drivers, except when using the GTL and GTLP signal standards. The voltage on the VCCO pins determines the voltage swing of the output signal. 2. VCCINT is the main power supply for the FPGA's internal logic. 3. The VCCAUX is an auxiliary source of power, primarily to optimize the performance of various FPGA functions such as I/O switching.
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
9
Spartan-3 FPGA Family: Functional Description
.
R
Left-Hand SLICEM (Logic or Distributed RAM or Shift Register)
Right-Hand SLICEL (Logic Only) COUT
CLB SLICE X1Y1
SLICE X1Y0 Switch Matrix COUT CIN SLICE X0Y1 SHIFTOUT SHIFTIN SLICE X0Y0 Interconnect to Neighbors
CIN
DS099-2_05_082104
Figure 5: Arrangement of Slices within the CLB
CLB Overview
The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing synchronous as well as combinatorial circuits. Each CLB comprises four interconnected slices, as shown in Figure 5. These slices are grouped in pairs. Each pair is organized as a column with an independent carry chain. The nomenclature that the FPGA Editor -- part of the Xilinx development software -- uses to designate slices is as follows: The letter "X" followed by a number identifies columns of slices. The "X" number counts up in sequence from the left side of the die to the right. The letter "Y" followed by a number identifies the position of each slice in a pair as well as indicating the CLB row. The "Y" number counts slices starting from the bottom of the die according to the sequence: 0, 1, 0, 1 (the first CLB row); 2, 3, 2, 3 (the second CLB row); etc. Figure 5 shows the CLB located in the lower left-hand corner of the die. Slices X0Y0 and X0Y1 make up the column-pair on the left where as slices X1Y0 and X1Y1 make up the column-pair on the right. For each CLB, the term "left-hand" (or SLICEM) is used to indicated the pair of slices labeled with an even "X" number, such as X0, and the term "right-hand" (or SLICEL) designates the pair of slices with an odd "X" number, e.g., X1.
ROM functions. Besides these, the left-hand pair supports two additional functions: storing data using Distributed RAM and shifting data with 16-bit registers. Figure 6 is a diagram of the left-hand slice; therefore, it represents a superset of the elements and connections to be found in all slices. See Function Generator, page 12 for more information. The RAM-based function generator -- also known as a Look-Up Table or LUT -- is the main resource for implementing logic functions. Furthermore, the LUTs in each left-hand slice pair can be configured as Distributed RAM or a 16-bit shift register. For information on the former, see XAPP464: Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs; for information on the latter, refer to XAPP465: Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs. The function generators located in the upper and lower portions of the slice are referred to as the "G" and "F", respectively. The storage element, which is programmable as either a D-type flip-flop or a level-sensitive latch, provides a means for synchronizing data to a clock signal, among other uses. The storage elements in the upper and lower portions of the slice are called FFY and FFX, respectively. Wide-function multiplexers effectively combine LUTs in order to permit more complex logic operations. Each slice has two of these multiplexers with F5MUX in the lower portion of the slice and FXMUX in the upper portion. Depending on the slice, FXMUX takes on the name F6MUX, F7MUX, or F8MUX. For more details on the multiplexers, see XAPP466: Using Dedicated Multiplexers in Spartan-3 FPGAs.
Elements Within a Slice
All four slices have the following elements in common: two logic function generators, two storage elements, wide-function multiplexers, carry logic, and arithmetic gates, as shown in Figure 6. Both the left-hand and right-hand slice pairs use these elements to provide logic, arithmetic, and
10 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
Notes: 1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown. 2. The index i can be 6, 7, or 8, depending on the slice. In this position, the upper right-hand slice has an F8MUX, and the upper left-hand slice has an F7MUX. The lower right-hand and left-hand slices both have an F6MUX.
Figure 6: Simplified Diagram of the Left-Hand SLICEM
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
11
Spartan-3 FPGA Family: Functional Description The carry chain, together with various dedicated arithmetic logic gates, support fast and efficient implementations of math operations. The carry chain enters the slice as CIN and exits as COUT. Five multiplexers control the chain: CYINIT, CY0F, and CYMUXF in the lower portion as well as CY0G and CYMUXG in the upper portion. The dedicated arithmetic logic includes the exclusive-OR gates XORF and XORG (upper and lower portions of the slice, respectively) as well as the AND gates GAND and FAND (upper and lower portions, respectively). 5. Drives the DI input of the LUT.
R
6. BY can control the REV inputs of both the FFY and FFX storage elements. See Storage Element Section. 7. Finally, the DIG_MUX multiplexer can switch BY onto to the DIG line, which exits the slice. Other slice signals shown in Figure 6, page 11 are discussed in the sections that follow.
Function Generator
Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). This permits any four-variable Boolean logic operation to be programmed into them. Furthermore, wide function multiplexers can be used to effectively combine LUTs within the same CLB or across different CLBs, making logic functions with still more input variables possible. The LUTs in both the right-hand and left-hand slice-pairs not only support the logic functions described above, but also can function as ROM that is initialized with data at the time of configuration. The LUTs in the left-hand slice-pair (even-numbered columns such as X0 in Figure 5) of each CLB support two additional functions that the right-hand slice-pair (odd-numbered columns such as X1) do not. First, it is possible to program the "left-hand LUTs" as distributed RAM. This type of memory affords moderate amounts of data buffering anywhere along a data path. One left-hand LUT stores 16 bits. Multiple left-hand LUTs can be combined in various ways to store larger amounts of data. A dual port option combines two LUTs so that memory access is possible from two independent data lines. A Distributed ROM option permits pre-loading the memory with data during FPGA configuration. Second, it is possible to program each left-hand LUT as a 16-bit shift register. Used in this way, each LUT can delay serial data anywhere from one to 16 clock cycles. The four left-hand LUTs of a single CLB can be combined to produce delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to form larger shift registers. It is also possible to combine shift registers across more than one CLB. The resulting programmable delays can be used to balance the timing of data pipelines.
Main Logic Paths
Central to the operation of each slice are two nearly identical data paths, distinguished using the terms top and bottom. The description that follows uses names associated with the bottom path. (The top path names appear in parentheses.) The basic path originates at an interconnect-switch matrix outside the CLB. Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect directly to the LUT. Once inside the slice, the lower 4-bit path passes through a function generator "F" (or "G") that performs logic operations. The function generator's Data output, "D", offers five possible paths: 1. Exit the slice via line "X" (or "Y") and return to interconnect. 2. Inside the slice, "X" (or "Y") serves as an input to the DXMUX (DYMUX) which feeds the data input, "D", of the FFY (FFX) storage element. The "Q" output of the storage element drives the line XQ (or YQ) which exits the slice. 3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain. 4. With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that performs arithmetic operations, producing a result on "X" (or "Y"). 5. Drive the multiplexer F5MUX to implement logic functions wider than four bits. The "D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer. In addition to the main logic paths described above, there are two bypass paths that enter the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the top half) can take any of several possible branches: 1. Bypass both the LUT and the storage element, then exit the slice as BXOUT (or BYOUT) and return to interconnect. 2. Bypass the LUT, then pass through a storage element via the D input before exiting as XQ (or YQ). 3. Control the wide function multiplexer F5MUX (or F6MUX). 4. Via multiplexers, serve as an input to the carry chain.
Block RAM Overview
All Spartan-3 devices support block RAM, which is organized as configurable, synchronous 18Kbit blocks. Block RAM stores relatively large amounts of data more efficiently than the distributed RAM feature described earlier. (The latter is better suited for buffering small amounts of data anywhere along signal paths.) This section describes basic Block RAM functions. For more information, see XAPP463: Using Block RAM in Spartan-3 FPGAs.
12 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description Block RAM and multipliers have interconnects between them that permit simultaneous operation; however, since the multiplier shares inputs with the upper data bits of block RAM, the maximum data path width of the block RAM is 18 bits in this case.
The aspect ratio -- i.e., width vs. depth -- of each block RAM is configurable. Furthermore, multiple blocks can be cascaded to create still wider and/or deeper memories. A choice among primitives determines whether the block RAM functions as dual- or single-port memory. A name of the form RAM16_S[wA]_S[wB] calls out the dual-port primitive, where the integers wA and wB specify the total data path width at ports wA and wB, respectively. Thus, a RAM16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A and an 18-bit-wide Port B. A name of the form RAM16_S[w] identifies the single-port primitive, where the integer w specifies the total data path width of the lone port. A RAM16_S18 is a single-port RAM with an 18-bit-wide port. Other memory functions -- e.g., FIFOs, data path width conversion, ROM, etc. -- are readily available using the CORE GeneratorTM system, part of the Xilinx development software.
The Internal Structure of the Block RAM
The block RAM has a dual port structure. The two identical data ports called A and B permit independent access to the common RAM block, which has a maximum capacity of 18,432 bits -- or 16,384 bits when no parity lines are used. Each port has its own dedicated set of data, control and clock lines for synchronous read and write operations. There are four basic data paths, as shown in Figure 7: (1) write to and read from Port A, (2) write to and read from Port B, (3) data transfer from Port A to Port B, and (4) data transfer from Port B to Port A.
Arrangement of RAM Blocks on Die
The XC3S50 has one column of block RAM. The Spartan-3 devices ranging from the XC3S200 to XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 have four columns. The position of the columns on the die is shown in Figure 1 in Module 1: Introduction and Ordering Information. For a given device, the total available RAM blocks are distributed equally among the columns. Table 8 shows the number of RAM blocks, the data storage capacity, and the number of columns for each device. Table 8: Number of RAM Blocks by Device
Total Number of RAM Blocks 4 12 16 24 32 40 96 104 Total Addressable Locations (bits) 73,728 221,184 294,912 442,368 589,824 737,280 1,769,472 1,916,928 Number of Columns 1 2 2 2 2 2 4 4
Write 4 Read
Read 3 Write
Spartan-3 Dual Port Block RAM
Write 1 Read
Port B
Port A
Write 2 Read
DS099-2_12_030703
Figure 7: Block RAM Data Paths
Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
Block RAM Port Signal Definitions
Representations of the dual-port primitive RAM16_S[wA]_S[wB] and the single-port primitive RAM16_S[w] with their associated signals are shown in Figure 8a and Figure 8b, respectively. These signals are defined in Table 9.
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
13
Spartan-3 FPGA Family: Functional Description
R
WEA ENA SSRA CLKA ADDRA[rA-1:0] DIA[wA-1:0] DIPA[3:0]
RAM16_wA_wB
DOPA[pA-1:0] DOA[wA-1:0]
WEB ENB SSRB CLKB ADDRB[rB-1:0] DIB[wB-1:0] DIPB[3:0]
DOPB[pB-1:0] DOB[wB-1:0]
WE EN SSR CLK ADDR[r-1:0] DI[w-1:0] DIP[p-1:0]
RAM16_Sw
DOP[p-1:0] DO[w-1:0]
(a) Dual-Port
(b) Single-Port
DS099-2_13_082104
Notes: 1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively. 2. pA and pB are integers that indicate the number of data path lines serving as parity bits. 3. rA and rB are integers representing the address bus width at ports A and B, respectively. 4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.
Figure 8: Block RAM Primitives
Table 9: Block RAM Port Signals Signal Description Address Bus Port A Signal Name
ADDRA
Port B Signal Name
ADDRB
Direction
Input
Function The Address Bus selects a memory location for read or write operations. The width (w) of the port's associated data path determines the number of available address lines (r). Data at the DI input bus is written to the addressed memory location addressed on an enabled active CLK edge. It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths of a given port. Each port is independent. For a port assigned a width (w), the number of addressable locations will be 16,384/(w-p) where "p" is the number of parity bits. Each memory location will have a width of "w" (including parity bits). See the DIP signal description for more information of parity.
Data Input Bus
DIA
DIB
Input
Parity Data Input(s)
DIPA
DIPB
Input
Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 10.
14 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 9: Block RAM Port Signals (Continued) Signal Description Data Output Bus Port A Signal Name
DOA
Port B Signal Name
DOB
Direction
Output
Function Basic data access occurs whenever WE is inactive. The DO outputs mirror the data stored in the addressed memory location. Data access with WE asserted is also possible if one of the following two attributes is chosen: WRITE_FIRST accesses data before the write takes place. READ_FIRST accesses data after the write occurs. A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE. It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths. See the DI signal description.
Parity Data Output(s)
DOPA
DOPB
Output
Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 10. When asserted together with EN, this input enables the writing of data to the RAM. In this case, the data access attributes WRITE_FIRST, READ_FIRST or NO_CHANGE determines if and how data is updated on the DO outputs. See the DO signal description. When WE is inactive with EN asserted, read operations are still possible. In this case, a transparent latch passes data from the addressed memory location to the DO outputs.
Write Enable
WEA
WEB
Input
Clock Enable
ENA
ENB
Input
When asserted, this input enables the CLK signal to synchronize Block RAM functions as follows: the writing of data to the DI inputs (when WE is also asserted), the updating of data at the DO outputs as well as the setting/resetting of the DO output latches. When de-asserted, the above functions are disabled. When asserted, this pin forces the DO output latch to the value that the SRVAL attribute is set to. A Set/Reset operation on one port has no effect on the other ports functioning, nor does it disturb the memory's data contents. It is synchronized to the CLK signal. This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge. Block RAM automatically performs a bus-matching function. When data are written to a port with a narrow bus, then read from a port with a wide bus, the latter port will effectively combine "narrow" words to form "wide" words. Similarly, when data are written into a port with a wide bus, then read from a port with a narrow bus, the latter port will divide
Set/Reset
SSRA
SSRB
Input
Clock
CLKA
CLKB
Input
Port Aspect Ratios
On a given port, it is possible to select a number of different possible widths (w - p) for the DI/DO buses as shown in Table 10. These two buses always have the same width. This data bus width selection is independent for each port. If the data bus width of Port A differs from that of Port B, the
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
15
Spartan-3 FPGA Family: Functional Description "wide" words to form "narrow" words. When the data bus width is eight bits or greater, extra parity bits become available. The width of the total data path (w) is the sum of the DI/DO bus width and any parity bits (p). The width selection made for the DI/DO bus determines the number of address lines according to the relationship expressed below: r = 14 - [log(w-p)/log(2)] (1) In turn, the number of address lines delimits the total number (n) of addressable locations or depth according to the following equation: Table 10: Port Aspect Ratios for Port A or B DI/DO Bus Width (w - p bits) 1 2 4 8 16 32 DIP/DOP Bus Width (p bits) 0 0 0 1 2 4 Total Data Path Width (w bits) 1 2 4 9 18 36 ADDR Bus Width (r bits) 14 13 12 11 10 9 No. of Addressable Locations (n) 16,384 8,192 4,096 2,048 1,024 512 Block RAM Capacity (bits) 16,384 16,384 16,384 18,432 18,432 18,432 n = 2r
R
(2)
The product of w and n yields the total block RAM capacity. Equations (1) and (2) show that as the data bus width increases, the number of address lines along with the number of addressable memory locations decreases. Using the permissible DI/DO bus widths as inputs to these equations provides the bus width and memory capacity measures shown in Table 10.
Block RAM Data Operations
Writing data to and accessing data from the block RAM are synchronous operations that take place independently on each of the two ports. The waveforms for the write operation are shown in the top half of the Figure 9, Figure 10, and Figure 11. When the WE and EN signals enable the active edge of CLK, data at the DI input bus is written to the block RAM location addressed by the ADDR lines. There are a number of different conditions under which data can be accessed at the DO outputs. Basic data access always occurs when the WE input is inactive. Under this
condition, data stored in the memory location addressed by the ADDR lines passes through a transparent output latch to the DO outputs. The timing for basic data access is shown in the portions of Figure 9, Figure 10, and Figure 11 during which WE is Low. Data can also be accessed on the DO outputs when asserting the WE input. This is accomplished using two different attributes: Choosing the WRITE_FIRST attribute, data is written to the addressed memory location on an enabled active CLK edge and is also passed to the DO outputs. WRITE_FIRST timing is shown in the portion of Figure 9 during which WE is High.
16 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
CLK
WE DI ADDR DO
XXXX 1111 2222 XXXX
aa
bb
cc
dd
0000
MEM(aa)
1111
2222
MEM(dd)
EN
DISABLED READ WRITE MEM(bb)=1111 WRITE MEM(cc)=2222 READ
DS099-2_14_030403
Figure 9: Waveforms of Block RAM Data Operations with WRITE_FIRST Selected Choosing the READ_FIRST attribute, data already stored in the addressed location pass to the DO outputs before that location is over-written with new data from the DI inputs on an enabled active CLK edge. READ_FIRST timing is shown in the portion of Figure 10 during which WE is High.
CLK
WE DI ADDR DO EN
DISABLED READ WRITE MEM(bb)=1111 WRITE MEM(cc)=2222 READ
DS099-2_15_030403
XXXX
1111
2222
XXXX
aa
bb
cc
dd
0000
MEM(aa)
old MEM(bb)
old MEM(cc)
MEM(dd)
Figure 10: Waveforms of Block RAM Data Operations with READ_FIRST Selected Choosing a third attribute called NO_CHANGE puts the DO outputs in a latched state when asserting WE. Under this condition, the DO outputs will retain the data driven just before WE was asserted. NO_CHANGE timing is shown in the portion of Figure 11 during which WE is High.
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
17
Spartan-3 FPGA Family: Functional Description
R
CLK WE DI ADDR DO
XXXX 1111 2222 XXXX
aa
bb
cc
dd
0000
MEM(aa)
MEM(dd)
EN
DISABLED READ WRITE MEM(bb)=1111 WRITE MEM(cc)=2222 READ
DS099-2_16_030403
Figure 11: Waveforms of Block RAM Data Operations with NO_CHANGE Selected
Dedicated Multipliers
All Spartan-3 devices provide embedded multipliers that accept two 18-bit words as inputs to produce a 36-bit product. This section provides an introduction to multipliers. For further details, see XAPP467: Using Embedded Multipliers in Spartan-3 FPGAs. The input buses to the multiplier accept data in two's-complement form (either 18-bit signed or 17-bit unsigned). One such multiplier is matched to each block RAM on the die. The close physical proximity of the two ensures efficient
data handling. Cascading multipliers permits multiplicands more than three in number as well as wider than 18-bits. The multiplier is placed in a design using one of two primitives: an asynchronous version called MULT18X18 and a version with a register at the outputs called MULT18X18S, as shown in Figure 12a and Figure 12b, respectively. The signals for these primitives are defined in Table 11. The CORE Generator system produces multipliers based on these primitives that can be configured to suit a wide range of requirements.
A[17:0] A[17:0] B[17:0] MULT18X18 P[35:0] B[17:0] CLK CE RST (a) Asynchronous 18-bit Multiplier
MULT18X18S P[35:0]
(b) 18-bit Multiplier with Register at Outputs
DS099-2_17_082104
Figure 12: Embedded Multiplier Primitives
18 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 11: Embedded Multiplier Primitives Descriptions Signal Name A[17:0] B[17:0] P[35:0] CLK CE RST Direction Input Input Output Input Input Input Function Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the enabled rising edge of CLK. Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the enabled rising edge of CLK. The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the MULT18X18S primitive, an enabled rising CLK edge updates the P bus. CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input when enabled by CE, updates the output register that drives the P bus. CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input enables the CLK signal to update the P bus. RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register on an enabled, rising CLK edge, forcing the P bus to all zeroes.
Notes: 1. The control signals CLK, CE and RST have the option of inverted polarity.
Digital Clock Manager (DCM)
Spartan-3 devices provide flexible, complete control over clock frequency, phase shift and skew through the use of the DCM feature. To accomplish this, the DCM employs a Delay-Locked Loop (DLL), a fully digital control system that uses feedback to maintain clock signal characteristics with a high degree of precision despite normal variations in operating temperature and voltage. This section provides a fundamental description of the DCM. For further information, see XAPP462: Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs. Each member of the Spartan-3 family has four DCMs, except the smallest, the XC3S50, which has two DCMs. The DCMs are located at the ends of the outermost Block RAM column(s). See Figure 1 in Module 1: Introduction and Ordering Information. The Digital Clock Manager is placed in a design as the "DCM" primitive. The DCM supports three major functions: * Clock-skew Elimination: Clock skew describes the extent to which clock signals may, under normal circumstances, deviate from zero-phase alignment. It occurs when slight differences in path delays cause the clock signal to arrive at different points on the die at different times. This clock skew can increase set-up and hold time requirements as well as clock-to-out time, which may be undesirable in applications operating at a high frequency, when timing is critical. The DCM eliminates clock skew by aligning the output clock signal it generates with another version of the clock signal that is fed back. As a result, the two clock signals establish a zero-phase relationship. This effectively cancels out clock distribution delays that may lie in the signal path leading from the clock output of the DCM to its feedback input. Frequency Synthesis: Provided with an input clock signal, the DCM can generate a wide range of different output clock frequencies. This is accomplished by either multiplying and/or dividing the frequency of the input clock signal by any of several different factors. Phase Shifting: The DCM provides the ability to shift the phase of all its output clock signals with respect to its input clock signal.
*
*
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
19
Spartan-3 FPGA Family: Functional Description
R
DCM
PSINCDEC PSEN PSCLK Phase Shifter PSDONE
Output Stage
CLKIN Input Stage Delay Taps
CLK0 CLK90 CLK180 CLK270 CLK2X CLK2X180 CLKDV CLKFX CLKFX180
8
Clock Distribution Delay
CLKFB
DFS DLL RST Status Logic
LOCKED STATUS [7:0]
DS099-2_07_040103
Figure 13: DCM Functional Blocks and Associated Signals The DCM has four functional components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), the Phase Shifter (PS), and the Status Logic. Each component has its associated signals, as shown in Figure 13.
Delay-Locked Loop (DLL)
The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an input stage, followed by a series of discrete delay elements or taps, which in turn leads to an output stage. This path together with logic for phase detection and control forms a system complete with feedback as shown in Figure 14.
Output Section
CLK0 CLK90 CLK180 CLK270 CLK2X CLK2X180 CLKDV
CLKIN
Delay 1
Delay 2
Delay n-1
Delay n
Control
LOCKED
CLKFB RST
Phase Detection
DS099-2_08_041103
Figure 14: Simplified Functional Diagram of DLL
20 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description a subset of the outputs available in the Low Frequency mode. See DLL Frequency Modes, page 23. Signals that initialize and report the state of the DLL are discussed in The Status Logic Component, page 28.
The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 12. The clock outputs drive simultaneously; however, the High Frequency mode only supports Table 12: DLL Signals
Mode Support Signal CLKIN CLKFB CLK0 CLK90 CLK180 CLK270 CLK2X CLK2X180 CLKDV Direction Input Input Output Output Output Output Output Output Output Description Accepts original clock signal. Accepts either CLK0 or CLK2X as feed back signal. (Set CLK_FEEDBACK attribute accordingly). Generates clock signal with same frequency and phase as CLKIN. Generates clock signal with same frequency as CLKIN, only phase-shifted 90. Generates clock signal with same frequency as CLKIN, only phase-shifted 180. Generates clock signal with same frequency as CLKIN, only phase-shifted 270. Generates clock signal with same phase as CLKIN, only twice the frequency. Generates clock signal with twice the frequency of CLKIN, phase-shifted 180 with respect to CLKIN. Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN. Low Frequency Yes Yes Yes Yes Yes Yes Yes Yes Yes High Frequency Yes Yes Yes No Yes No No No Yes
The clock signal supplied to the CLKIN input serves as a reference waveform, with which the DLL seeks to align the feedback signal at the CLKFB input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network to all the registers it synchronizes. These registers are either internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network intro-
duces. The control block activates the appropriate number of delay elements to cancel out the clock skew. Once the DLL has brought the CLK0 signal in phase with the CLKIN signal, it asserts the LOCKED output, indicating a "lock" on to the CLKIN signal.
DLL Attributes and Related Functions
A number of different functional options can be set for the DLL component through the use of the attributes described in Table 13. Each attribute is described in detail in the sections that follow:
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
21
Spartan-3 FPGA Family: Functional Description
R
Table 13: DLL Attributes Attribute CLK_FEEDBACK DLL_FREQUENCY_MODE CLKIN_DIVIDE_BY_2 CLKDV_DIVIDE Description Chooses either the CLK0 or CLK2X output to drive the CLKFB input Chooses between High Frequency and Low Frequency modes Halves the frequency of the CLKIN signal just as it enters the DCM Selects constant used to divide the CLKIN input frequency to generate the CLKDV output frequency Enables 50% duty cycle correction for the CLK0, CLK90, CLK180, and CLK270 outputs Values NONE, 1X, 2X LOW, HIGH TRUE, FALSE 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16. TRUE, FALSE
DUTY_CYCLE_CORRECTION
DLL Clock Input Connections
An external clock source enters the FPGA using a Global Clock Input Buffer (IBUFG), which directly accesses the global clock network or an Input Buffer (IBUF). Clock signals within the FPGA drive a global clock net using a Global Clock Multiplexer Buffer (BUFGMUX). The global clock net connects directly to the CLKIN input. The internal and external connections are shown in Figure 15a and Figure 15c, respectively. A differential clock (e.g., LVDS) can serve as an input to CLKIN.
DLL Clock Output and Feedback Connections
As many as four of the nine DCM clock outputs can simultaneously drive the four BUFGMUX buffers on the same die edge (top or bottom). All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.
The feedback loop is essential for DLL operation and is established by driving the CLKFB input with either the CLK0 or the CLK2X signal so that any undesirable clock distribution delay is included in the loop. It is possible to use either of these two signals for synchronizing any of the seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180. The value assigned to the CLK_FEEDBACK attribute must agree with the physical feedback connection: a value of 1X for the CLK0 case, 2X for the CLK2X case. If the DCM is used in an application that does not require the DLL -- i.e., only the DFS is used -- then there is no feedback loop so CLK_FEEDBACK is set to NONE. There are two basic cases that determine how to connect the DLL clock outputs and feedback connections: on-chip synchronization and off-chip synchronization, which are illustrated in Figure 15a through Figure 15d.
22 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
FPGA
BUFGMUX BUFG CLKIN CLK90 CLK180 CLK270 CLKDV CLK2X CLK2X180 CLK0 BUFGMUX CLK0 BUFG CLKIN
Clock Net Delay
FPGA
BUFGMUX CLK0 CLK90 CLK180 CLK270 CLKDV CLK2X180 CLK2X BUFGMUX CLK2X
DCM
CLKFB
DCM
CLKFB
Clock Net Delay
(a) On-Chip with CLK0 Feedback FPGA
IBUFG CLKIN CLK90 CLK180 CLK270 CLKDV CLK2X CLK2X180 CLK0 OBUF OBUF
(b) On-Chip with CLK2X Feedback FPGA
IBUFG CLKIN CLK0 CLK90 CLK180 CLK270 CLKDV CLK2X180 CLK2X OBUF OBUF
DCM
CLKFB IBUFG
Clock Net Delay
DCM
CLKFB IBUFG
Clock Net Delay
CLK0
CLK2X
(c) Off-Chip with CLK0 Feedback
(d) Off-Chip with CLK2X Feedback
DS099-2_09_082104
Notes: 1. In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180, and CLKDV outputs are available.
Figure 15: Input Clock, Output Clock, and Feedback Connections for the DLL In the on-chip synchronization case (Figure 15a and Figure 15b), it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in Figure 15a, the feedback loop is created by routing CLK0 (or CLK2X, in Figure 15b) to a global clock net, which in turn drives the CLKFB input. In the off-chip synchronization case (Figure 15c and Figure 15d), CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in Figure 15c, the feedback loop is formed by feeding CLK0 (or CLK2X, in Figure 15d) back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input. attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits all seven DLL clock outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows the CLK0, CLK180 and CLKDV outputs to operate at the highest possible frequencies. The remaining DLL clock outputs are not available for use in High Frequency mode.
Accommodating High Input Frequencies
If the frequency of the CLKIN signal is high such that it exceeds the maximum permitted, divide it down to an acceptable value using the CLKIN_DIVIDE_BY_2 attribute. When this attribute is set to TRUE, the CLKIN frequency is divided by a factor of two just as it enters the DCM.
Coarse Phase Shift Outputs of the DLL Component
In addition to CLK0 for zero-phase alignment to the CLKIN signal, the DLL also provides the CLK90, CLK180 and CLK270 outputs for 90, 180 and 270 phase-shifted signals, respectively. These signals are described in Table 12.
DLL Frequency Modes
The DLL supports two distinct operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DLL_FREQUENCY_MODE
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
23
Spartan-3 FPGA Family: Functional Description Their relative timing in the Low Frequency Mode is shown in Figure 16. The CLK90, CLK180 and CLK270 outputs are not available when operating in the High Frequency mode. (See the description of the DLL_FREQUENCY_MODE attribute in Table 13.) For control in finer increments than 90, see the Phase Shifter (PS), page 26 section.
R
Phase:
0
o
90 180 270
o
o
o
0
o
90 180 270
o
o
o
0
o
Input Signal (30% Duty Cycle)
t
Basic Frequency Synthesis Outputs of the DLL Component
The DLL component provides basic options for frequency multiplication and division in addition to the more flexible synthesis capability of the DFS component, described in a later section. These operations result in output clock signals with frequencies that are either a fraction (for division) or a multiple (for multiplication) of the incoming clock frequency. The CLK2X output produces an in-phase signal that is twice the frequency of CLKIN. The CLK2X180 output also doubles the frequency, but is 180 out-of-phase with respect to CLKIN. The CLKDIV output generates a clock frequency that is a predetermined fraction of the CLKIN frequency. The CLKDV_DIVIDE attribute determines the factor used to divide the CLKIN frequency. The attribute can be set to various values as described in Table 13. The basic frequency synthesis outputs are described in Table 12. Their relative timing in the Low Frequency Mode is shown in Figure 16. The CLK2X and CLK2X180 outputs are not available when operating in the High Frequency mode. (See the description of the DLL_FREQUENCY_MODE attribute in Table 14.)
CLKIN
Output Signal - Duty Cycle is Always Corrected
CLK2X
CLK2X180 (1) CLKDV
Output Signal - Attribute Corrects Duty Cycle
DUTY_CYCLE_CORRECTION = FALSE CLK0
CLK90
CLK180
Duty Cycle Correction of DLL Clock Outputs
The CLK2X180, and output signals ordinarily exhibit a 50% duty cycle - even if the incoming CLKIN signal has a different duty cycle. Fifty-percent duty cycle means that the High and Low times of each clock cycle are equal. The DUTY_CYCLE_CORRECTION attribute determines whether or not duty cycle correction is applied to the CLK0, CLK90, CLK180 and CLK270 outputs. If DUTY_CYCLE_CORRECTION is set to TRUE, then the duty cycle of these four outputs is corrected to 50%. If DUTY_CYCLE_CORRECTION is set to FALSE, then these outputs exhibit the same duty cycle as the CLKIN signal. Figure 16 compares the characteristics of the DLL's output signals to those of the CLKIN signal. CLK2X(1), CLKDV(2)
CLK270 DUTY_CYCLE_CORRECTION = TRUE CLK0
CLK90
CLK180
CLK270
DS099-2_10_031303
Notes: 1. The DLL attribute CLKDV_DIVIDE is set to 2.
Figure 16: Characteristics of the DLL Clock Outputs
1. The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock. 2. The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when the CLKDV_DIVIDE attribute is set to a non-integer value and the DLL is operating in the High Frequency mode.
24 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description the two DFS outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows both these outputs to operate at the highest possible frequencies.
Digital Frequency Synthesizer (DFS)
The DFS component generates clock signals the frequency of which is a product of the clock frequency at the CLKIN input and a ratio of two user-determined integers. Because of the wide range of possible output frequencies such a ratio permits, the DFS feature provides still further flexibility than the DLL's basic synthesis options as described in the preceding section. The DFS component's two dedicated outputs, CLKFX and CLKFX180, are defined in Table 15. The signal at the CLKFX180 output is essentially an inversion of the CLKFX signal. These two outputs always exhibit a 50% duty cycle. This is true even when the CLKIN signal does not. These DFS clock outputs are driven at the same time as the DLL's seven clock outputs. The numerator of the ratio is the integer value assigned to the attribute CLKFX_MULTIPLY and the denominator is the integer value assigned to the attribute CLKFX_DIVIDE. These attributes are described in Table 14. The output frequency (fCLKFX) can be expressed as a function of the incoming clock frequency (fCLKIN) as follows: fCLKFX = fCLKIN*(CLKFX_MULTIPLY/CLKFX_DIVIDE) (3) Regarding the two attributes, it is possible to assign any combination of integer values, provided that two conditions are met: 1. The two values fall within their corresponding ranges, as specified in Table 14. 2. The fCLKFX frequency calculated from the above expression accords with the DCM's operating frequency specifications. For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, then the frequency of the output clock signal would be 5/3 that of the input clock signal.
DFS With or Without the DLL
The DFS component can be used with or without the DLL component: Without the DLL, the DFS component multiplies or divides the CLKIN signal frequency according to the respective CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating a clock with the new target frequency on the CLKFX and CLKFX180 outputs. Though classified as belonging to the DLL component, the CLKIN input is shared with the DFS component. This case does not employ feedback loop; therefore, it cannot correct for clock distribution delay. With the DLL, the DFS operates as described in the preceding case, only with the additional benefit of eliminating the clock distribution delay. In this case, a feedback loop from the CLK0 output to the CLKFB input must be present. The DLL and DFS components work together to achieve this phase correction as follows: Given values for the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL selects the delay element for which the output clock edge coincides with the input clock edge whenever mathematically possible. For example, when CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input and output clock edges will coincide every three input periods, which is equivalent in time to five output periods. Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values achieve faster lock times. With no factors common to the two attributes, alignment will occur once with every number of cycles equal to the CLKFX_DIVIDE value. Therefore, it is recommended that the user reduce these values by factoring wherever possible. For example, given CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both value-pairs will result in the multiplication of clock frequency by 3/2, the latter value-pair will enable the DLL to lock more quickly.
DFS Frequency Modes
The DFS supports two operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DFS_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits Table 14: DFS Attributes Attribute DFS_FREQUENCY_MODE CLKFX_MULTIPLY CLKFX_DIVIDE
Description Chooses between High Frequency and Low Frequency modes Frequency multiplier constant Frequency divisor constant
Values Low, High Integer from 2 to 32 Integer from 1 to 32
Table 15: DFS Signals Signal CLKFX CLKFX180 Direction Output Output Description Multiplies the CLKIN frequency by the attribute-value ratio (CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency. Generates a clock signal with same frequency as CLKFX, only shifted 180 out-of-phase.
www.xilinx.com 25
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
Spartan-3 FPGA Family: Functional Description
R
DFS Clock Output Connections
There are two basic cases that determine how to connect the DFS clock outputs: on-chip and off-chip, which are illustrated in Figure 15a and Figure 15c, respectively. This is similar to what has already been described for the DLL component. See the DLL Clock Output and Feedback Connections, page 22 section. In the on-chip case, it is possible to connect either of the DFS's two output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. The optional feedback loop is formed in this way, routing CLK0 to a global clock net, which in turn drives the CLKFB input. In the off-chip case, the DFS's two output clock signals, plus CLK0 for an optional feedback loop, can exit the FPGA using output buffers (OBUF) to drive a clock network plus registers on the board. The feedback loop is formed by feeding the CLK0 signal back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input.
PS Component Enabling and Mode Selection
The CLKOUT_PHASE_SHIFT attribute enables the PS component for use in addition to selecting between two operating modes. As described in Table 16, this attribute has three possible values: NONE, FIXED and VARIABLE. When CLKOUT_PHASE_SHIFT is set to NONE, the PS component is disabled and its inputs, PSEN, PSCLK, and PSINCDEC, must be tied to GND. The set of waveforms in Figure 17a shows the disabled case, where the DLL maintains a zero-phase alignment of signals CLKFB and CLKIN upon which the PS component has no effect. The PS component is enabled by setting the attribute to either the FIXED or VARIABLE values, which select the Fixed Phase mode and the Variable Phase mode, respectively. These two modes are described in the sections that follow
Determining the Fine Phase Shift
The user controls the phase shift of CLKFB relative to CLKIN by setting and/or adjusting the value of the PHASE_SHIFT attribute. This value must be an integer ranging from -255 to +255. The PS component uses this value to calculate the desired fine phase shift (TPS) as a fraction of the CLKIN period (TCLKIN). Given values for PHASE-SHIFT and TCLKIN, it is possible to calculate TPS as follows: TPS = (PHASE_SHIFT/256)*TCLKIN (4) Both the Fixed Phase and Variable Phase operating modes employ this calculation. If the PHASE_SHIFT value is zero, then CLKFB and CLKIN will be in phase, the same as when the PS component is disabled. When the PHASE_SHIFT value is positive, the CLKFB signal will be shifted later in time with respect to CLKIN. If the attribute value is negative, the CLKFB signal will be shifted earlier in time with respect to CLKIN.
Phase Shifter (PS)
The DCM provides two approaches to controlling the phase of a DCM clock output signal relative to the CLKIN signal: First, there are nine clock outputs that employ the DLL to achieve a desired phase relationship: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV CLKFX, and CLKFX180. These outputs afford "coarse" phase control. The second approach uses the PS component described in this section to provide a still finer degree of control. The PS component accomplishes this by introducing a "fine phase shift" (TPS) between the CLKFB and CLKIN signals inside the DLL component. The user can control this fine phase shift down to a resolution of 1/256 of a CLKIN cycle or one tap delay (DCM_TAP), whichever is greater. When in use, the PS component shifts the phase of all nine DCM clock output signals together. If the PS component is used together with a DCM clock output such as the CLK90, CLK180, CLK270, CLK2X180 and CLKFX180, then the fine phase shift of the former gets added to the coarse phase shift of the latter. Table 16: PS Attributes Attribute CLKOUT_PHASE_SHIFT PHASE_SHIFT
The Fixed Phase Mode
This mode fixes the desired fine phase shift to a fraction of the TCLKIN, as determined by Equation (4) and its user-selected PHASE_SHIFT value P. The set of waveforms in Figure 17b illustrates the relationship between CLKFB and CLKIN in the Fixed Phase mode. In the Fixed Phase mode, the PSEN, PSCLK and PSINCDEC inputs are not used and must be tied to GND.
Description Disables PS component or chooses between Fixed Phase and Variable Phase modes. Determines size and direction of initial fine phase shift.
Values NONE, FIXED, VARIABLE Integers from -255 to +255(1)
Notes: 1. The practical range of values will be less when TCLKIN > FINE_SHIFT_RANGE in the Fixed Phase mode, also when TCLKIN > (FINE_SHIFT_RANGE)/2 in the Variable Phase mode. the FINE_SHIFT_RANGE represents the sum total delay of all taps.
26 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
a. CLKOUT_PHASE_SHIFT = NONE
CLKIN
CLKFB
b. CLKOUT_PHASE_SHIFT = FIXED
CLKIN Shift Range over all P Values:
-255 0 P * TCLKIN 256 +255
CLKFB
c. CLKOUT_PHASE_SHIFT = VARIABLE
CLKIN Shift Range over all P Values:
-255 0 P * TCLKIN 256 +255
CLKFB before Decrement Shift Range over all N Values:
-255 N *T 256 CLKIN 0 +255
CLKFB after Decrement
DS099-2_11_031303
Notes: 1. P represents the integer value ranging from -255 to +255 to which the PHASE_SHIFT attribute is assigned. 2. N is an integer value ranging from -255 to +255 that represents the net phase shift effect from a series of increment and/or decrement operations. N = {Total number of increments} - {Total number of decrements} A positive value for N indicates a net increment; a negative value indicates a net decrement.
Figure 17: Phase Shifter Waveforms
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
27
Spartan-3 FPGA Family: Functional Description
R
Table 17: Signals for Variable Phase Mode Signal PSEN(1) PSCLK(1) PSINCDEC(1) PSDONE Direction Input Input Input Output Description Enables PSCLK for variable phase adjustment. Clock to synchronize phase shift adjustment. Chooses between increment and decrement for phase adjustment. It is synchronized to the PSCLK signal. Goes High to indicate that present phase adjustment is complete and PS component is ready for next phase adjustment request. It is synchronized to the PSCLK signal.
Notes: 1. It is possible to program this input for either a true or inverted polarity
The Variable Phase Mode
The "Variable Phase" mode dynamically adjusts the fine phase shift over time using three inputs to the PS component, namely PSEN, PSCLK and PSINCDEC, as defined in Table 17. Just following device configuration, the PS component initially determines TPS by evaluating Equation (4) for the value assigned to the PHASE_SHIFT attribute. Then to dynamically adjust that phase shift, use the three PS inputs to increase or decrease the fine phase shift. PSINCDEC is synchronized to the PSCLK clock signal, which is enabled by asserting PSEN. It is possible to drive the PSCLK input with the CLKIN signal or any other clock signal. A request for phase adjustment is entered as follows: For each PSCLK cycle that PSINCDEC is High, the PS component adds 1/256 of a CLKIN cycle to TPS. Similarly, for each enabled PSCLK cycle that PSINCDEC is Low, the PS component subtracts 1/256 of a CLKIN cycle from TPS. The phase adjustment may require as many as 100 CLKIN cycles plus three PSCLK cycles to take effect, at which Table 18: Status Logic Signals Signal RST STATUS[7:0] LOCKED Direction Input Output Output
point the output PSDONE goes High for one PSCLK cycle. This pulse indicates that the PS component has finished the present adjustment and is now ready for the next request. Asserting the Reset (RST) input, returns TPS to its original shift time, as determined by the PHASE_SHIFT attribute value. The set of waveforms in Figure 17c illustrates the relationship between CLKFB and CLKIN in the Variable Phase mode.
The Status Logic Component
The Status Logic component not only reports on the state of the DCM but also provides a means of resetting the DCM to an initial known state. The signals associated with the Status Logic component are described in Table 18. As a rule, the Reset (RST) input is asserted only upon configuring the device or changing the CLKIN frequency. A DCM reset does not affect attribute values (e.g., CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST must be tied to GND. The eight bits of the STATUS bus are defined in Table 19.
Description A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay of zero. Sets the LOCKED output Low. This input is asynchronous. The bit values on the STATUS bus provide information regarding the state of DLL and PS operation Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals are out-of-phase when Low.
28 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
Table 19: DCM STATUS Bus Bit 0 Name Phase Shift Overflow Description A value of 1 indicates a phase shift overflow when one of two conditions occur: * Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle. * 1 2 3 4 5 6 7 CLKIN Activity Reserved Reserved Reserved Reserved Reserved Reserved The DLL is producing its maximum possible phase shift (i.e., all delay taps are active).(1) A value of 1 indicates that the CLKIN signal is not toggling. A value of 0 indicates toggling. This bit functions only when the CLKFB input is connected.(2) -
Notes: 1. The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE. 2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.
Table 20: Status Attributes Attribute STARTUP_WAIT Description Values
Delays transition from configuration to user mode until lock condition is achieved. TRUE, FALSE as DCMs. Four BUFGMUX elements are placed at the center of the die's bottom edge, just above the GCLK0 - GCLK4 inputs. The remaining four BUFGMUX elements are placed at the center of the die's top edge, just below the GCLK4 GCLK7 inputs. Each BUFGMUX element is a 2-to-1 multiplexer that can receive signals from any of the four following sources: 1. One of the four Global Clock inputs on the same side of the die -- top or bottom -- as the BUFGMUX element in use. 2. Any of four nearby horizontal Double lines. 3. Any of four outputs from the DCM in the right-hand quadrant that is on the same side of the die as the BUFGMUX element in use. 4. Any of four outputs from the DCM in the left-hand quadrant that is on the same side of the die as the BUFGMUX element in use. Each BUFGMUX can switch incoming clock signals to two possible destinations: 1. The vertical spine belonging to the same side of the die -- top or bottom -- as the BUFGMUX element in use. The two spines -- top and bottom -- each comprise four vertical clock lines, each running from one of the BUFGMUX elements on the same side towards the center of the die. At the center of the die, clock signals reach the eight-line horizontal spine, which spans the
29
Stabilizing DCM Clocks Before User Mode
It is possible to delay the completion of device configuration until after the DLL has achieved a lock condition using the STARTUP_WAIT attribute described in Table 20. This option ensures that the FPGA does not enter user mode -- i.e., begin functional operation -- until all system clocks generated by the DCM are stable. In order to achieve the delay, it is necessary to set the attribute to TRUE as well as set the BitGen option LCK_cycle to one of the six cycles making up the Startup phase of configuration. The selected cycle defines the point at which configuration will halt until the LOCKED output goes High.
Global Clock Network
Spartan-3 devices have eight Global Clock inputs called GCLK0 - GCLK7. These inputs provide access to a low-capacitance, low-skew network that is well-suited to carrying high-frequency signals. The Spartan-3 clock network is shown in Figure 18. GCLK0 through GCLK3 are placed at the center of the die's bottom edge. GCLK4 through GCLK7 are placed at the center of the die's top edge. It is possible to route each of the eight Global Clock inputs to any CLB on the die. Eight Global Clock Multiplexers (also called BUFGMUX elements) are provided that accept signals from Global Clock inputs and route them to the internal clock network as well
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
Spartan-3 FPGA Family: Functional Description width of the die. In turn, the horizontal spine branches out into a subsidiary clock interconnect that accesses the CLBs. 2. The clock input of either DCM on the same side of the die -- top or bottom -- as the BUFGMUX element in use.
GCLK7 GCLK6
R
A Global clock input is placed in a design using either a BUFGMUX element or the BUFG (Global Clock Buffer) element. For the purpose of minimizing the dynamic power dissipation of the clock network, the Xilinx development software automatically disables all clock line segments that a design does not use.
GCLK5 GCLK4
4 DCM 4
4 BUFGMUX
4 4 DCM 8
4
* * *
8 Horizontal Spine 8 Top Spine
* * *
8 Array Dependent
* * *
4 4 DCM 4
4 BUFGMUX
*
Bottom Spine
* *
4 4 DCM
Array Dependent
GCLK2 GCLK3
GCLK0 GCLK1
DS099-2_18_070203
Figure 18: Spartan-3 Clock Network (Top View)
30 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description ble lines in terms of capability: Hex lines approach the high-frequency characteristics of Long lines at the same time, offering greater connectivity. Double lines connect to every other CLB (see Figure 19c). Compared to the types of lines already discussed, Double lines provide a higher degree of flexibility when making connections. Direct lines afford any CLB direct access to neighboring CLBs (see Figure 19d). These lines are most often used to conduct a signal from a "source" CLB to a Double, Hex, or Long line and then from the longer interconnect back to a Direct line accessing a "destination" CLB.
Interconnect
Interconnect (or routing) passes signals among the various functional elements of Spartan-3 devices. There are four kinds of interconnect: Long lines, Hex lines, Double lines, and Direct lines. Long lines connect to one out of every six CLBs (see Figure 19a). Because of their low capacitance, these lines are well-suited for carrying high-frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock Inputs are already committed and there remain additional clock signals to be assigned, Long lines serve as a good alternative. Hex lines connect one out of every three CLBs (see Figure 19b). These lines fall between Long lines and Dou-
CLB
CLB
CLB
CLB
CLB
CLB
CLB
CLB
CLB
CLB
* * *
* * *
* * *
* * *
6
6
6
(a) Long Line
6
8
CLB
CLB
CLB
CLB
CLB
CLB
DS099-2_20_040103
(b) Hex Line
CLB 2 CLB CLB CLB CLB
DS099-2_21_040103
CLB
CLB
CLB
CLB
(c) Double Line
CLB
CLB
CLB
DS099-2_22_040103
(d) Direct Lines Figure 19: Types of Interconnect
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
* * *
6
DS099-2_19_040103
CLB
31
Spartan-3 FPGA Family: Functional Description
R
Configuration
Spartan-3 devices are configured by loading application specific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are "Dedicated" to one function only, while others, indicated by the term "Dual-Purpose", Table 21: Spartan-3 Configuration Mode Pin Settings Configuration Mode (1) Master Serial Slave Serial Master Parallel Slave Parallel JTAG M0 0 1 1 0 1 M1 0 1 1 1 0 M2 0 1 0 1 1
can be re-used as general-purpose User I/Os once configuration is complete. Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M0, M1, and M2 are Dedicated pins. The mode pin settings are shown in Table 21.
Synchronizing Clock CCLK Output CCLK Input CCLK Output CCLK Input TCK Input
Data Width 1 1 8 8 1
Serial DOUT (2) Yes Yes No No No
Notes: 1. The voltage levels on the M0, M1, and M2 pins select the configuration mode. 2. The daisy chain is possible only in the Serial modes when DOUT is used.
An additional pin, HSWAP_EN, is used in conjunction with the mode pins to select whether user I/O pins have pull-ups during configuration. By default, HSWAP_EN is tied High (internal pull-up) which shuts off the pull-ups on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. Other Dedicated pins are CCLK (the configuration clock pin), DONE, PROG_B, and the boundary-scan pins: TDI, TDO, TMS, and TCK. Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or an input accepting an externally generated clock. A persist option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the boundary-scan related pins. The persist feature is valuable in applications that readback configuration data after entering the User mode. Table 22 lists the total number of bits required to configure each FPGA as well as the PROMs suitable for storing those bits. See DS123: Platform Flash In-System Programmable Configuration PROMs data sheet for more information.
Table 22: Spartan-3 Configuration Data
Xilinx Platform Flash PROM Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 File Sizes 439,264 1,047,616 1,699,136 3,223,488 5,214,784 7,673,024 11,316,864 13,271,936 Serial Configuration XCF01S XCF01S XCF02S XCF04S XCF08P XCF08P XCF16P XCF16P Parallel Configuration XCF08P XCF08P XCF08P XCF08P XCF08P XCF08P XCF16P XCF16P
The Standard Configuration Interface
Configuration signals belong to one of two different categories: Dedicated or Dual-Purpose. Which category determines which of the FPGA's power rails supplies the signal's driver and, thus, helps describe the electrical at the pin. The Dedicated configuration pins include PROG_B, HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and M0-M2. These pins use the VCCAUX lines for power.
The Dual-Purpose configuration pins comprise INIT_B, DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of these pins, according to its bank placement, uses the VCCO lines for either Bank 4 (VCCO_4) or Bank 5 (VCCO_5). All the signals used in the serial configuration modes rely on VCCO_4 power. Signals used in the parallel configuration modes and Readback require from VCCO_5 as well as from VCCO_4. Both the Dedicated and Dual-Purpose signals described above constitute the configuration interface. In the standard case, this interface is 2.5V-LVCMOS-compatible. This means that 2.5V is applied to the VCCAUX, VCCO_4, and VCCO_5 lines (this last in the parallel or Readback case only). One need only apply 2.5 Volts to these VCCO lines from power-on to the end of configuration. Upon entering the User mode, it is possible to switch to supply voltage permitting signal swings other than 2.5V.
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
32 40
www.xilinx.com
R
Spartan-3 FPGA Family: Functional Description
3.3V-Tolerant Configuration Interface
It is possible to achieve 3.3V-tolerance at the configuration interface simply by adding a few external resistors. This approach may prove useful when it is undesirable to switch the VCCO_4 and VCCO_5 voltages from 2.5V to 3.3V after configuration. The 3.3V-tolerance is implemented as follows (a similar approach can be used for other supply voltage levels): First, to power the Dual-Purpose configuration pins, apply 3.3V to the VCCO_4 and (as needed) the VCCO_5 lines. This scales the output voltages and input thresholds associated with these pins so that they become 3.3V-compatible. Second, to power the Dedicated configuration pins, apply 2.5V to the VCCAUX lines (the same as for the standard interface). In order to achieve 3.3V-tolerance, the Dedicated inputs will require series resistors that limit the incoming current to 10mA or less. The Dedicated outputs will need pull-up resistors to ensure adequate noise margin when the FPGA is driving a High logic level into another device's 3.3V receiver. Choose a power regulator or supply that can tolerate reverse current on the VCCAUX lines.
Configuration Modes
Spartan-3 supports the following five configuration modes: * * * * * Slave Serial mode Master Serial mode Slave Parallel mode Master Parallel mode Boundary-Scan (JTAG) mode (IEEE 1532/IEEE 1149.1)
Slave Serial Mode
In Slave Serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The FPGA on the far right of Figure 20 is set for the Slave Serial mode. The CCLK pin on the FPGA is an input in this mode. The serial bitstream must be set up at the DIN input pin a short time before each rising edge of the externally generated CCLK. Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the falling edge of CCLK.
2.5V
3.3V
2.5V
2.5V
1.2V VCCO VCC VCCJ D0 VCCO Bank 4 VCCAUX DIN VCCINT DOUT VCCO Bank 4 VCCAUX DIN VCCINT
1.2V
Spartan-3 FPGA
Spartan-3 FPGA
2.5V
Platform Flash PROM XCF0xS or XCFxxP
CE OE/RESET CF CLK GND All 4.7K
2.5V
Master
M0 M1 M2
Slave
M0 M1 M2
DONE INIT_B PROG_B CCLK GND
DONE INIT_B PROG_B CCLK GND
DS099_23_041103
Notes: 1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3K to 4.7K is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330) in order to ensure a rise time within one clock cycle. 2. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.
Figure 20: Connection Diagram for Master and Slave Serial Configuration
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
33
Spartan-3 FPGA Family: Functional Description Slave Serial mode is selected by applying <111> to the mode pins (M0, M1, and M2). A pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected.
R
Master Serial Mode
In Master Serial mode, the CCLK pin is an output pin. The FPGA just to the right of the PROM in Figure 20 is set for Master Serial mode. It is the FPGA that drives the configuration clock on the CCLK pin to a Xilinx Serial PROM which in turn feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the falling CCLK edge. The interface is identical to slave serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a default frequency of 6 MHz. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration.
controlling the flow of data. An external source provides 8-bit-wide data, CCLK, an active-Low Chip Select (CS_B) signal and an active-Low Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the Slave Parallel mode. If RDWR_B is asserted, configuration data is read out of the FPGA as part of a readback operation. After configuration, it is possible to use any of the Multipurpose pins (DIN/D0-D7, DOUT/BUSY, INITB, CS_B, and RDWR_B) as User I/Os. To do this, simply set the BitGen option Persist to No and assign the desired signals to multipurpose configuration pins using the Xilinx development software. Alternatively, it is possible to continue using the configuration port (e.g. all configuration pins taken together) when operating in the User mode. This is accomplished by setting the Persist option to Yes. Multiple FPGAs can be configured using the Slave Parallel mode and can be made to start-up simultaneously. Figure 21 shows the device connections. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data.
Slave Parallel Mode
The Parallel modes support the fastest configuration. Byte-wide data is written into the FPGA with a BUSY flag
34 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
D[0:7] CCLK RDWR_B BUSY 2.5V 2.5V
VCCO Banks 4 & 5 VCCAUX VCCINT
1.2V
VCCO Banks 4 & 5 VCCAUX VCCINT
1.2V
Spartan-3 Slave
D[0:7] CCLK RDWR_B BUSY 2.5V CS_B CS_B PROG_B DONE 4.7K DONE INIT_B PROG_B 4.7K M1 M2 M0 CS_B
Spartan-3 Slave
D[0:7] CCLK RDWR_B BUSY 2.5V CS_B PROG_B DONE M1 M2 M0
2.5V
INIT_B GND
INIT_B GND
DS099_24_041103
Notes: 1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3K to 4.7K is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330) in order to ensure a rise time within one clock cycle. 2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then asserting the CS_B of the other FPGA. 3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.
Figure 21: Connection Diagram for Slave Parallel Configuration
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
35
Spartan-3 FPGA Family: Functional Description
R
2.5V
3.3V
2.5V VCCO Banks 4 & 5 VCCAUX VCCO VCC VCCJ DATA[0:7] CCLK VCCINT
1.2V
Spartan-3 Master
D[0:7] CCLK 2.5V All 4.7K PROG_B DONE INIT_B RDWR_B CS_B GND
Platform Flash PROM XCFxxP
CF CE OE/RESET GND
DS099_25_041103
Notes: 1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3K to 4.7K is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330) in order to ensure a rise time within one clock cycle.
Figure 22: Connection Diagram for Master Parallel Configuration
Master Parallel Mode
In this mode, the device is configured byte-wide on a CCLK supplied by the FPGA. Timing is similar to the Slave Parallel mode except that CCLK is supplied by the FPGA. The device connections are shown in Figure 22.
Configuration Sequence
The configuration of Spartan-3 devices is a three-stage process that occurs after Power-On Reset or the assertion of PROG_B. POR occurs after the VCCINT, VCCAUX, and VCCO Bank 4 supplies have reached their respective maximum input threshold levels (see Table 6 in Module 3: DC and Switching Characteristics). After POR, the three-stage process begins. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. A flow diagram for the configuration sequence of the Serial and Parallel modes is shown in Figure 23. The flow diagram for the Boundary-Scan configuration sequence appears in Figure 24.
Boundary-Scan (JTAG) Mode
In Boundary-Scan mode, dedicated pins are used for configuring the FPGA. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). FPGA configuration using the Boundary-Scan mode is compliant with the IEEE 1149.1-1993 standard and the new IEEE 1532 standard for In-System Configurable (ISC) devices. Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the Boundary-Scan mode simply turns off the other modes.
36 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description
Power-On
Set PROG_B Low after Power-On
VCCINT >1V and VCCAUX > 2V and VCCO Bank 4 > 1V
No
Yes Yes
Clear configuration memory
PROG_B = Low
No
No
INIT_ B = High?
Yes
Sample mode pins
Load configuration data frames
CRC correct?
No
INIT_B goes Low. Abort Start-Up
Yes Start-Up sequence
User mode
No
Reconfigure?
Yes
DS099_26_041103
Figure 23: Configuration Flow Diagram for the Serial and Parallel Modes
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
www.xilinx.com
37
Spartan-3 FPGA Family: Functional Description
R
Power-On
Set PROG_B Low after Power-On
VCCINT >1V and VCCAUX > 2V and VCCO Bank 4 > 1V
No
Yes Clear configuration memory Yes
PROG_B = Low
No No INIT_B = High?
Yes Sample mode pins (JTAG port becomes available) Load JShutdown instruction
Load CFG_IN instruction
Shutdown sequence
Load configuration data frames
CRC correct? Yes Synchronous TAP reset (Clock five 1's on TMS)
No
INIT_B goes Low. Abort Start-Up
Load JSTART instruction
Start-Up sequence
User mode
No
Reconfigure?
Yes
DS099_27_041103
Figure 24: Boundary-Scan Configuration Flow Diagram
38 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
R
Spartan-3 FPGA Family: Functional Description The default start-up sequence, shown in Figure 25, serves as a transition to the User mode. The default start-up sequence is that one CCLK cycle after DONE goes High, the Global Three-State signal (GTS) is released. This permits device outputs to which signals have been assigned to become active. One CCLK cycle later, the Global Write Enable (GWE) signal is released. This permits the internal storage elements to begin changing state in response to the design logic and the user clock. The relative timing of configuration events can be changed via the BitGen options in the Xilinx development software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start synchronously. The sequence can also be paused at any stage, until lock has been achieved on any DCM.
Configuration is automatically initiated after power-on unless it is delayed by the user. INIT_B is an open-drain line that the FPGA holds Low during the clearing of the configuration memory. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. The configuration process can also be initiated by asserting the PROG_B pin. The end of the memory-clearing phase is signaled by the INIT_B pin going High. At this point, the configuration data is written to the FPGA. The FPGA holds the Global Set/Reset (GSR) signal active throughout configuration, keeping all flip-flops on the device in a reset state. The completion of the entire process is signaled by the DONE pin going High.
Default Cycles
Start-Up Clock Phase 0 1 2 3 4 5 67
Readback
Using Slave Parallel mode, configuration data from the FPGA can be read back. Readback is supported only in the Slave Parallel and Boundary-Scan modes. Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM, and block RAM resources. This capability is used for real-time debugging.
DONE GTS GSR
GWE
Sync-to-DONE
Start-Up Clock Phase 0 1 2 3 4 5 67
DONE High DONE GTS GSR
GWE
DS099_028_040803
Notes: 1. The BitGen option StartupClk in the Xilinx development software selects the CCLK input, TCK input, or a user-designated global clock input (the GCLK0 - GCLK7 pins) for receiving the clock signal that synchronizes Start-Up.
Figure 25: Default Start-Up Sequence
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification www.xilinx.com 39
Spartan-3 FPGA Family: Functional Description
R
Revision History
Date 04/11/03 05/19/03 07/11/03 Version No. 1.0 1.1 1.2 Initial Xilinx release Added Block RAM column, DCMs, and multipliers to XC3S50 descriptions. Explained the configuration port Persist option in Slave Parallel Mode section. Updated Figure 2 and Double-Data-Rate Transmission section to indicate that DDR clocking for the XC3S50 is the same as that for all other Spartan-3 devices. Updated description of I/O voltage tolerance in ESD Protection section. In Table 6, changed input termination type for DCI version of the LVCMOS standard to None. Added additional flexibility for making DLL connections in Figure 15 and accompanying text. In the Configuration section, inserted an explanation of how to choose power supplies for the configuration interface, including guidelines for achieving 3.3V-tolerance. Showed inversion of 3-state signal (Figure 1). Clarified description of pull-up and pull-down resistors (Table 2 and page 4). Added information on operating block RAM with multipliers to page 13. Corrected output buffer name in Figure 15. Corrected description of how DOUT is synchronized to CCLK (page 33). Description
08/24/04
1.3
The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1) DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2) DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3) DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)
40 40
www.xilinx.com
DS099-2 (v1.3) August 24, 2004 Preliminary Product Specification
039
R
Spartan-3 FPGA Family: DC and Switching Characteristics
0 0
DS099-3 (v1.5) December 17, 2004
Advance Product Specification
DC Electrical Characteristics
In this section, specifications may be designated as Advance, Preliminary, or Production. These terms are defined as follows: Advance: Initial estimates are based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production. Preliminary: Based on characterization. Further changes are not expected. Production: These specifications are approved once the silicon has been characterized over numerous production lots. Parameter values are considered stable with no future changes expected. All parameter limits are representative of worst-case supply voltage and junction temperature conditions. The following applies unless otherwise noted: The parameter values published in this module apply to all SpartanTM-3 Table 1: Absolute Maximum Ratings
Symbol VCCINT VCCAUX VCCO VREF VIN(2) Description Internal supply voltage Auxiliary supply voltage Output driver supply voltage Input reference voltage Voltage applied to all User I/O pins and Dual-Purpose pins Voltage applied to all Dedicated pins VESD Electrostatic Discharge Voltage Human body model XC3S50 Other Charged device model Machine model XC3S50, XC3S400, XC3S1500 Driver in a high-impedance state Conditions Min -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -1500 -2000 -500 -200 Max 1.32 3.00 3.75 VCCO + 0.5(3) VCCO + 0.5(3) VCCAUX + 0.5(4) +1500 +2000 +500 +200 Units V V V V V V V V V V
devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. All parameters representing voltages are measured with respect to GND. Some specifications list different values for one or more die revisions. All presently available Spartan-3 devices are classified as revision 0. Future updates to this module will introduce further die revisions as needed. If a particular Spartan-3 FPGA differs in functional behavior or electrical characteristic from this data sheet, those differences are described in a separate errata document. The errata documents for Spartan-3 FPGAs are living documents and are available online. All specifications in this module also apply to the Spartan-3L family (the low-power version of the Spartan-3 family). Refer to the Spartan-3L datasheet (DS313) for any differences.
(c) 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
www.xilinx.com
1
Spartan-3 FPGA Family: DC and Switching Characteristics Table 1: Absolute Maximum Ratings (Continued)
Symbol TJ Description Junction temperature VCCO < 3.0V VCCO > 3.0V TSTG Storage temperature Conditions Min -65 Max 125 105 150 Units C C C
R
Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely affects device reliability. 2. As a rule, the VIN limits apply to both the DC and AC components of signals. Simple application solutions are available that show how to handle overshoot/undershoot as well as achieve PCI compliance. Refer to the following application notes: "Virtex-II ProTM and Spartan-3 3.3V PCI Reference Design" (XAPP653) and "Using 3.3V I/O Guidelines in a Virtex-II Pro Design" (XAPP659). 3. All User I/O and Dual-Purpose pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) draw power from the VCCO power rail of the associated bank. Meeting the VIN max limit ensures that the internal diode junctions that exist between each of these pins and the VCCO rail do not turn on. Table 5 specifies the VCCO range used to determine the max limit. When VCCO is at its maximum recommended operating level (3.45V), VIN max is 3.95V. The maximum voltage that avoids oxide stress is VINX = 4.05V. As long as the VIN max specification is met, oxide stress is not possible. 4. All Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail (2.5V). Meeting the VIN max limit ensures that the internal diode junctions that exist between each of these pins and the VCCAUX rail do not turn on. Table 5 specifies the VCCAUX range used to determine the max limit. When VCCAUX is at its maximum recommended operating level (2.625V), VIN max < 3.125V. As long as the VIN max specification is met, oxide stress is not possible. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface section in Module 2: Functional Description. 5. For soldering guidelines, see "Device Packaging and Thermal Characteristics" at www.xilinx.com/bvdocs/userguides/ug112.pdf.
Table 2: Supply Voltage Thresholds for Power-On Reset Symbol VCCINTT VCCAUXT VCCO4T Description Threshold for the VCCINT supply Threshold for the VCCAUX supply Threshold for the VCCO Bank 4 supply Min 0.4 0.8 0.4 Max 1.0 2.0 1.0 Units V V V
Notes: 1. VCCINT, VCCAUX, and VCCO supplies may be applied in any order. When applying VCCINT power before VCCAUX power, the FPGA may draw a surplus current in addition to the quiescent current levels specified in Table 7. Applying VCCAUX eliminates the surplus current. The FPGA does not use any of the surplus current for the power-on process. For this power sequence, make sure that regulators with foldback features will not shut down inadvertently. 2. To ensure successful power-on, VCCINT, VCCO Bank 4, and VCCAUX supplies must rise through their respective threshold-voltage ranges with no dips at any point.
2
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 3: Power Voltage Ramp Time Requirements Symbol TCCO Description VCCO ramp time for all eight banks Device XC3S50 XC3S200 Package All FT and FG Other XC3S400 FT and FG Other XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 All All All All All Min No limit 0.6 2.0 0.6 2.0 No limit 0.6 No limit 2.0 No limit Max Units ms ms ms ms ms ms ms ms ms ms
Notes: 1. This specification is based on characterization. It applies to Revision 0 devices and will be improved in the future. 2. The ramp time is measured from 10% to 90% of the full nominal voltage swing for all I/O standards. 3. At present, there are no ramp requirements for the VCCINT and VCCAUX supplies. 4. For information on power-on current needs, see Note 3 of Table 7.
Table 4: Power Voltage Levels Necessary for Preserving RAM Contents Symbol VDRINT VDRAUX Description VCCINT level required to retain RAM data VCCAUX level required to retain RAM data Min 1.0 2.0 Units V V
Notes: 1. RAM contents include configuration data. 2. The level of the VCCO supply has no effect on data retention.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
3
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 5: General Recommended Operating Conditions Symbol TJ VCCINT VCCO (1) VCCAUX (2) Description Junction temperature Commercial Industrial Internal supply voltage Output driver supply voltage Auxiliary supply voltage Min 0 -40 1.140 1.140 2.375 Nom 1.200 2.500 Max 85 100 1.260 3.450 2.625 Units C C V V V
Notes: 1. The VCCO range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended VCCO range specific to each of the single-ended I/O standards is given in Table 8, and that specific to the differential standards is given in Table 10. 2. Only during DCM operation, it is recommended that the rate of change of VCCAUX not exceed 10 mV/ms.
Table 6: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins Symbol IL
(2)
Description Leakage current at User I/O, Dual-Purpose, and Dedicated pins
Device Revision 0 Future
Test Conditions Driver is in a high-impedance state, VIN = 0V or VCCO max, sample-tested VCCO > 3.0V VCCO < 3.0V All VCCO levels
Min -25 -10 -10 -0.84 -0.69 -0.47 -0.21 -0.13 -0.06 0.37
Typ -
Max +25 +10 +10 -2.35 -1.99 -1.41 -0.69 -0.43 -0.22 1.67
Units A A A mA mA mA mA mA mA mA
IRPU(3)
Current through pull-up resistor at User I/O, Dual-Purpose, and Dedicated pins
All
VIN = 0V, VCCO = 3.3V VIN = 0V, VCCO = 3.0V VIN = 0V, VCCO = 2.5V VIN = 0V, VCCO = 1.8V VIN = 0V, VCCO = 1.5V VIN = 0V, VCCO = 1.2V
IRPD(3)
Current through pull-down resistor at User I/O, Dual-Purpose, and Dedicated pins VREF current per pin
All
VIN = VCCO
IREF
0 Future
VCCO > 3.0V VCCO < 3.0V All VCCO levels
-25 -10 -10 3
-
+25 +10 +10 10
A A A pF
CIN
Input capacitance
All
Notes: 1. The numbers in this table are based on the conditions set forth in Table 5. 2. The IL specification applies to every I/O pin throughout power-on as long as the voltage on that pin stays between the absolute VIN minimum and maximum values (Table 1). For hot-swap applications, at the time of card connection, be sure to keep all I/O voltages within this range before applying VCCO power. Also consider applying VCCO power before the connection of data lines occurs. When the FPGA is completely unpowered, the impedance at the I/O pins is high. 3. This parameter is based on characterization. The pull-up resistance RPU = VCCO / IRPU. The pull-down resistance RPD = VIN / IRPD. Spartan-3 family values for both resistances are stronger than they have been for previous FPGA families.
4
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 7: Quiescent Supply Current Characteristics Symbol ICCINTQ Description Quiescent VCCINT supply current Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 ICCOQ Quiescent VCCO supply current XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 ICCAUXQ Quiescent VCCAUX supply current XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 Typ 10.0 20.0 35.0 65.0 65.0 75.0 100.0 150.0 1.5 1.5 1.5 2.0 2.5 3.0 3.5 3.5 10.0 15.0 20.0 25.0 40.0 50.0 60.0 70.0 20.0 30.0 40.0 50.0 75.0 10.0 10.0 12.0 12.0 14.0 Max 25.0 70.0 100.0 190.0 250.0 Units mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
Notes: 1. The numbers in this table are based on the conditions set forth in Table 5. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. For typical values, the ambient temperature (TA) is 25C with VCCINT = 1.2V, VCCO = 2.5V, and VCCAUX = 2.5V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional elements, the use of DCI standards, etc.), measured quiescent current levels may be higher than the values in the table. Use the Web Power Tool or XPower for more accurate estimates. See Note 2. 2. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3 Web Power Tool at http://www.xilinx.com/ise/power_tools provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower, part of the Xilinx development software, takes a netlist as input to provide more accurate maximum and typical estimates. 3. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
5
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 8: Recommended Operating Conditions for User I/Os Using Single-Ended Standards
VCCO Signal Standard GTL(3) GTL_DCI GTLP(3) GTLP_DCI HSLVDCI_15 HSLVDCI_18 HSLVDCI_25 HSLVDCI_33 HSTL_I, HSTL_I_DCI HSTL_III, HSTL_III_DCI HSTL_I_18, HSTL_I_DCI_18 HSTL_II_18, HSTL_II_DCI_18 HSTL_III_18, HSTL_III_DCI_18 LVCMOS12(4) LVCMOS15, LVDCI_15, LVDCI_DV2_15(4) LVCMOS18, LVDCI_18, LVDCI_DV2_18(4) LVCMOS25(4,5), LVDCI_25, LVDCI_DV2_25(4) LVCMOS33, LVDCI_33, LVDCI_DV2_33(4) LVTTL PCI33_3(7) SSTL18_I, SSTL18_I_DCI SSTL2_I, SSTL2_I_DCI SSTL2_II, SSTL2_II_DCI Min (V) 1.4 1.7 2.3 3.0 1.4 1.4 1.7 1.7 1.7 1.14 1.4 1.7 Nom (V) 1.5 1.5 1.5 1.8 2.5 3.3 1.5 1.5 1.8 1.8 1.8 1.2 1.5 1.8 Max (V) 1.6 1.9 2.7 3.45 1.6 1.6 1.9 1.9 1.9 1.3 1.6 1.9 Min (V) 0.74 0.74 0.88 0.88 0.68 0.8 VREF Nom (V) 0.8 0.8 1 1 0.75 0.9 1.25 1.65 0.75 0.9 0.9 0.9 1.1 Max (V) 0.86 0.86 1.12 1.12 0.9 1.1 VIL Max (V) VREF - 0.05 VREF - 0.05 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 0.20VCCO 0.20VCCO 0.20VCCO VIH Min (V) VREF + 0.05 VREF + 0.05 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 0.58VCCO 0.70VCCO 0.70VCCO
2.3
2.5
2.7
-
-
-
0.7
1.7
3.0 3.0 1.65 2.3 2.3
3.3 3.3 3.0 1.8 2.5 2.5
3.45 3.45 1.95 2.7 2.7
0.825 1.15 1.15
0.9 1.25 1.25
0.975 1.35 1.35
0.8 0.8 0.30VCCO VREF - 0.125 VREF - 0.15 VREF - 0.15
2.0 2.0 0.50VCCO VREF + 0.125 VREF + 0.15 VREF + 0.15
Notes: 1. Descriptions of the symbols used in this table are as follows: VCCO -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs VREF -- the reference voltage for setting the input switching threshold VIL -- the input voltage that indicates a Low logic level VIH -- the input voltage that indicates a High logic level 2. For device operation, the maximum signal voltage (VIH max) may be as high as VIN max. See Table 1. 3. Because the GTL and GTLP standards employ open-drain output buffers, VCCO lines do not supply current to the I/O circuit, rather this current is provided using an external pull-up resistor connected from the I/O pin to a termination voltage (VTT). Nevertheless, the voltage applied to the associated VCCO lines must always be at or above VTT and I/O pad voltages. 4. There is approximately 100 mV of hysteresis on inputs using any LVCMOS standard. 5. All Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the VCCAUX rail (2.5V). The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) use the LVCMOS25 standard before the User mode. For these pins, apply 2.5V to the VCCO Bank 4 and VCCO Bank 5 rails at power-on as well as throughout configuration. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface section in Module 2: Functional
Description.
6. 7.
The Global Clock Inputs (GCLK0-GCLK7) are Dual-Purpose pins to which any signal standard may be assigned. For more information, see "Virtex-II Pro and Spartan-3 3.3V PCI Reference Design" (XAPP653).
6
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 9: DC Characteristics of User I/Os Using Single-Ended Standards
Test Conditions Signal Standard and Current Drive Attribute (mA) GTL GTL_DCI GTLP GTLP_DCI HSLVDCI_15 HSLVDCI_18 HSLVDCI_25 HSLVDCI_33 HSTL_I HSTL_I_DCI HSTL_III HSTL_III_DCI HSTL_I_18 HSTL_I_DCI_18 HSTL_II_18 HSTL_II_DCI_18 HSTL_III_18 HSTL_III_DCI_18 LVCMOS12(4) 2 4 6 LVCMOS15(4) 2 4 6 8 12 LVDCI_15, LVDCI_DV2_15 LVCMOS18(4) 2 4 6 8 12 16 LVDCI_18, LVDCI_DV2_18 LVCMOS25(4,5) 2 4 6 8 12 16 24 LVDCI_25, LVDCI_DV2_25 8 Note 3 24 Note 3 8 Note 3 16 Note 3 24 Note 3 2 4 6 2 4 6 8 12 Note 3 2 4 6 8 12 16 Note 3 2 4 6 8 12 16 24 Note 3 -8 Note 3 -8 Note 3 -8 Note 3 -16 Note 3 -8 Note 3 -2 -4 -6 -2 -4 -6 -8 -12 Note 3 -2 -4 -6 -8 -12 -16 Note 3 -2 -4 -6 -8 -12 -16 -24 Note 3 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 0.4 VCCO - 0.4 IOL (mA) 32 Note 3 36 Note 3 Note 3 IOH (mA) Note 3 Note 3 Note 3 0.4 VCCO - 0.4 0.6 Logic Level Characteristics VOL Max (V) 0.4 VOH Min (V) -
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
7
Spartan-3 FPGA Family: DC and Switching Characteristics Table 9: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)
Test Conditions Signal Standard and Current Drive Attribute (mA) LVCMOS33(4) 2 4 6 8 12 16 24 LVDCI_33, LVDCI_DV2_33 LVTTL(4) 2 4 6 8 12 16 24 PCI33_3 SSTL18_I SSTL18_I_DCI SSTL2_I SSTL2_I_DCI SSTL2_II(7) SSTL2_II_DCI(7) IOL (mA) 2 4 6 8 12 16 24 Note 3 2 4 6 8 12 16 24 Note 6 6.7 Note 3 8.1 Note 3 16.2 Note 3 IOH (mA) -2 -4 -6 -8 -12 -16 -24 Note 3 -2 -4 -6 -8 -12 -16 -24 Note 6 -6.7 Note 3 -8.1 Note 3 -16.2 Note 3 VTT - 0.80 VTT + 0.80 VTT - 0.61 VTT + 0.61 0.10VCCO VTT - 0.475 0.90VCCO VTT + 0.475 0.4 2.4 Logic Level Characteristics VOL Max (V) 0.4 VOH Min (V) VCCO - 0.4
R
Notes: 1. The numbers in this table are based on the conditions set forth in Table 5 and Table 8. 2. Descriptions of the symbols used in this table are as follows: IOL -- the output current condition under which VOL is tested IOH -- the output current condition under which VOH is tested VOL -- the output voltage that indicates a Low logic level VOH -- the output voltage that indicates a High logic level VIL -- the input voltage that indicates a Low logic level VIH -- the input voltage that indicates a High logic level VCCO -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs VREF -- the reference voltage for setting the input switching threshold VTT -- the voltage applied to a resistor termination 3. Tested according to the standard's relevant specifications. When using the DCI version of a standard on a given I/O bank, that bank will consume more power than if the non-DCI version had been used instead. The additional power is drawn for the purpose of impedance-matching at the I/O pins. A portion of this power is dissipated in the two RREF resistors. 4. For the LVCMOS and LVTTL standards: the same VOL and VOH limits apply for both the Fast and Slow slew attributes. 5. All Dedicated output pins (CCLK, DONE, and TDO) as well as Dual-Purpose totem-pole output pins (D0-D7 and BUSY/DOUT) exhibit the characteristics of LVCMOS25 with 12 mA drive and Fast slew rate. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface section in Module 2: Functional Description. 6. Tested according to the relevant PCI specifications. For more information, see "Virtex-II Pro and Spartan-3 3.3V PCI Reference Design" (XAPP653). 7. The minimum usable VTT voltage is 1.25V.
8
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
VINP Internal Logic VINN
P N
Differential I/O Pair Pins
VINN VINP GND level
50%
VICM
VID
VICM = Input common mode voltage =
VINP + VINN 2
VID = Differential input voltage = VINP - VINN
DS099-3_01_012304
Figure 1: Differential Input Voltages
Table 10: Recommended Operating Conditions for User I/Os Using Differential Signal Standards
VCCO(1) Signal Standard LDT_25 (ULVDS_25) LVDS_25, LVDS_25_DCI BLVDS_25 LVDSEXT_25, LVDSEXT_25_DCI LVPECL_25 RSDS_25 Min (V) 2.375 2.375 2.375 2.375 2.375 2.375 Nom (V) 2.50 2.50 2.50 2.50 2.50 2.50 Max (V) 2.625 2.625 2.625 2.625 2.625 2.625 Min (mV) 200 100 100 100 100 VID Nom (mV) 600 350 350 540 200 Max (mV) 1000 600 1000 Min (V) 0.44 0.30 0.30 VICM Nom (V) 0.60 1.25 1.25 1.20 1.20 Max (V) 0.78 2.20 2.20 Min (V) 0.8 VIH Max (V) 2.0 Min (V) 0.5 VIL Max (V) 1.7 -
Notes: 1. VCCO only supplies differential output drivers, not input circuits. 2. VREF inputs are not used for any of the differential I/O standards. 3. VID is a differential measurement.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
9
Spartan-3 FPGA Family: DC and Switching Characteristics
R
VOUTP Internal Logic VOUTN
P N
Differential I/O Pair Pins
VOUTN VOUTP GND level
50%
VOH VOD VOCM
VOL
VOCM = Output common mode voltage =
VOUTP + VOUTN
2 VOD = Output differential voltage = VOUTP - VOUTN
VOH = Output voltage indicating a High logic level VOL = Output voltage indicating a Low logic level
DS099-3_02_012304
Figure 2: Differential Output Voltages Table 11: DC Characteristics of User I/Os Using Differential Signal Standards
VOD Signal Standard LDT_25 (ULVDS_25) LVDS_25 Device Revision All 0 Future BLVDS_25 LVDSEXT_25 LVPECL_25(6) RSDS_25 All 0 Future All 0 Future Min (mV) 430(3) 100 250 250 100 330 100 100 Typ (mV) 600 350 Max (mV) 670 600 450 450 600 700 600 400 VOD Min (mV) -15 Max (mV) 15 Min (V) 0.495 0.80 1.125 VOCM Typ (V) 0.600 1.20 Max (V) 0.715 1.6 1.375 VOCM Min (mV) -15 Max (mV) 15 Min (V) 0.71 0.85 1.25 0.85 1.29 1.35 0.85 1.15 VOH Max (V) 1.05 1.90 1.60 1.90 1.73 1.745 1.90 1.60 Min (V) 0.16 0.50 0.90 0.50 0.77 0.565 0.50 0.90 VOL Max (V) 0.50 1.55 1.25 1.55 1.21 1.005 1.55 1.35
0.80 1.125 0.80 1.1
1.6 1.375 1.6 1.4
Notes: 1. The numbers in this table are based on the conditions set forth in Table 5 and Table 10. 2. VOD, VOD, and VOCM are differential measurements. 3. This value must be compatible with the receiver to which the FPGA's output pair is connected. 4. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100 across the N and P pins of the differential signal pair. 5. At any given time, only one differential standard may be assigned to each bank. 6. Each LVPECL output-pair requires three external resistors: a 70 resistor in series with each output followed by a 240 shunt resistor. These are in addition to the external 100 termination resistor at the receiver side. See Figure 3.
70 240 70 100
ds099-3_08_020304
Figure 3: External Terminations for LVPECL
10
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Switching Characteristics
All Spartan-3 devices are available in two speed grades: -4 and the higher performance -5. Switching characteristics in this document may be designated as Advance, Preliminary, or Production. Each category is defined as follows: Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. All -5 grade numbers are engineering targets: characterization is still in progress. Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data. Production: These specifications are approved once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specified limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the following applies: Parameter values apply to all Spartan-3 devices. All parameters representing voltages are measured with respect to GND. Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3 speed files (v1.35), part of the Xilinx Development Software, are the original source for many but not all of the values. The speed grade designations for these files are shown in Table 12. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist. Table 12: Spartan-3 v1.35 Speed Grade Designations Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 Advance -5 -5 -5 -5 -5 -4, -5 -4, -5 -4, -5 Preliminary Production -4 -4 -4 -4 -4
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
11
Spartan-3 FPGA Family: DC and Switching Characteristics
R
I/O Timing
Table 13: Pin-to-Pin Clock-to-Output Times for the IOB Output Path Speed Grade -5 Symbol Description Clock-to-Output Times TICKOFDCM When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is in use. Conditions LVCMOS25(2), 12mA output drive, Fast slew rate, with DCM(3) Device
XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
-4 Max 2.35 1.75 1.75 2.39 2.36 2.34 2.24 2.30 4.24 4.46 4.48 4.59 4.66 4.80 5.09 5.02 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Max 2.04 1.45 1.45 2.07 2.05 2.03 1.94 2.00 3.70 3.89 3.91 4.00 4.07 4.19 4.44 4.38
TICKOF
When reading from OFF, the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is not in use.
LVCMOS25(2),
12mA output drive, Fast slew rate, without DCM
XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5 and Table 8. 2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 17. If the latter is true, add the appropriate Output adjustment from Table 20. 3. DCM output jitter is included in all measurements.
12
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 14: Pin-to-Pin Setup and Hold Times for the IOB Input Path
Speed Grade -5 Symbol Setup Times TPSDCM When writing to the Input Flip-Flop (IFF), the time from the setup of data at the Input pin to the active transition at a Global Clock pin. The DCM is in use. No Input Delay is programmed. LVCMOS25(2), IOBDELAY = NONE, with DCM(4) XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 TPSFD When writing to IFF, the time from the setup of data at the Input pin to an active transition at the Global Clock pin. The DCM is not in use. The Input Delay is programmed. LVCMOS25(2), IOBDELAY = IFD, without DCM XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 Hold Times TPHDCM When writing to IFF, the time from the active transition at the Global Clock pin to the point when data must be held at the Input pin. The DCM is in use. No Input Delay is programmed. LVCMOS25(3), IOBDELAY = NONE, with DCM(4) XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 TPHFD When writing to IFF, the time from the active transition at the Global Clock pin to the point when data must be held at the Input pin. The DCM is not in use. The Input Delay is programmed. LVCMOS25(3), IOBDELAY = IFD, without DCM XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 -0.45 -0.12 -0.12 -0.43 -0.45 -0.47 -0.54 -0.49 -0.98 -0.40 -0.27 -1.19 -1.43 -1.38 -1.82 -2.57 -0.40 -0.05 -0.05 -0.38 -0.40 -0.42 -0.49 -0.44 -0.93 -0.35 -0.22 -1.14 -1.38 -1.33 -1.77 -2.52 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 2.37 2.13 2.15 2.58 2.55 2.59 2.67 2.52 3.00 2.63 2.50 3.50 3.78 3.78 4.44 5.26 2.71 2.35 2.36 2.95 2.91 2.96 3.05 2.88 3.46 3.02 2.87 4.03 4.35 4.35 5.12 6.06 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Description Conditions Device Min -4 Min Units
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5 and Table 8. 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 17. If this is true of the data Input, add the appropriate Input adjustment from the same table. 3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 17. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge. 4. DCM output jitter is included in all measurements. DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39 www.xilinx.com 13
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 15: Setup and Hold Times for the IOB Input Path Speed Grade -5 Symbol
Setup Times
-4 Min Units
Description
Conditions LVCMOS25(2), IOBDELAY = NONE
Device
Min
TIOPICK
Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No Input Delay is programmed. Time from the setup of data at the Input pin to the active transition at the IFF's ICLK input. The Input Delay is programmed.
All
1.65
1.89
ns
TIOPICKD
LVCMOS25(2), IOBDELAY = IFD
XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
2.76 3.54 3.59 2.94 3.40 3.69 5.11 5.43
3.17 4.07 4.12 3.37 3.91 4.24 5.87 6.24
ns ns ns ns ns ns ns ns
Hold Times
TIOICKP
Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No Input Delay is programmed. Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. The Input Delay is programmed.
LVCMOS25(3), IOBDELAY = NONE
All
-0.55
-0.63
ns
TIOICKPD
LVCMOS25(3), IOBDELAY = IFD
XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
-1.44 -2.03 -2.06 -1.58 -1.95 -2.18 -3.31 -3.57
-1.65 -2.33 -2.37 -1.81 -2.24 -2.51 -3.81 -4.11
ns ns ns ns ns ns ns ns
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5 and Table 8. 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 17. 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock's active edge.
14
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 16: Propagation Times for the IOB Input Path Speed Grade -5 Symbol
Propagation Times
-4 Max Units
Description
Conditions LVCMOS25(2), IOBDELAY = NONE
Device
Max
TIOPI
The time it takes for data to travel from the Input pin to the IOB's I output with no input delay programmed The time it takes for data to travel from the Input pin to the I output with the Input delay programmed
All
0.73
0.83
ns
TIOPID
LVCMOS25(2), IOBDELAY = IFD
XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
2.41 2.96 3.01 2.58 3.04 3.34 4.75 5.08 1.44
2.77 3.40 3.45 2.97 3.50 3.83 5.46 5.83 1.66
ns ns ns ns ns ns ns ns ns
TIOPLI
The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed The time it takes for data to travel from the Input pin through the IFF latch to the I output with the input delay programmed
LVCMOS25(2), IOBDELAY = NONE
All
TIOPLID
LVCMOS25(2), IOBDELAY = IFD
XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000
3.12 3.68 3.72 3.30 3.76 4.05 5.47 5.79
3.59 4.23 4.28 3.79 4.32 4.66 6.28 6.66
ns ns ns ns ns ns ns ns
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5 and Table 8. 2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, add the appropriate Input adjustment from Table 17.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
15
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 17: Input Timing Adjustments for IOB
Add the Adjustment Below Convert Input Time from LVCMOS25 to the Following Signal Standard Single-Ended Standards GTL, GTL_DCI GTLP, GTLP_DCI HSLVDCI_15 HSLVDCI_18 HSLVDCI_25 HSLVDCI_33 HSTL_I, HSTL_I_DCI HSTL_III, HSTL_III_DCI HSTL_I_18, HSTL_I_DCI_18 HSTL_II_18, HSTL_II_DCI_18 HSTL_III_18, HSTL_III_DCI_18 LVCMOS12 LVCMOS15 LVDCI_15 LVDCI_DV2_15 LVCMOS18 LVDCI_18 LVDCI_DV2_18 LVCMOS25 0.44 0.36 0.51 0.29 0.51 0.51 0.51 0.37 0.36 0.39 0.45 0.63 0.42 0.38 0.38 0.24 0.29 0.28 0 0.50 0.42 0.59 0.33 0.59 0.59 0.59 0.42 0.41 0.45 0.52 0.72 0.49 0.43 0.44 0.28 0.33 0.33 0 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Speed Grade -5 -4 Units
Table 17: Input Timing Adjustments for IOB (Continued)
Add the Adjustment Below Convert Input Time from LVCMOS25 to the Following Signal Standard LVDCI_25 LVDCI_DV2_25 LVCMOS33, LVDCI_33, LVDCI_DV2_33 LVTTL PCI33_3 PCI66_3 SSTL18_I, SSTL18_I_DCI SSTL2_I, SSTL2_I_DCI SSTL2_II, SSTL2_II_DCI Differential Standards LDT_25 (ULVDS_25) LVDS_25, LVDS_25_DCI BLVDS_25 LVDSEXT_25, LVDSEXT_25_DCI LVPECL_25 RSDS_25 0.76 0.65 0.34 0.80 0.18 0.43 0.88 0.75 0.39 0.92 0.21 0.50 ns ns ns ns ns ns Speed Grade -5 0.05 0.04 -0.05 0.18 0.20 0.18 0.39 0.40 0.36 -4 0.05 0.04 -0.02 0.21 0.22 0.20 0.45 0.46 0.41 Units ns ns ns ns ns ns ns ns ns
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10. 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.
16
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 18: Timing for the IOB Output Path Speed Grade -5 Symbol
Clock-to-Output Times
-4 Max Units
Description
Conditions LVCMOS25(2), 12mA output drive, Fast slew rate
Max
TIOCKP
When reading from the Output Flip-Flop (OFF), the time from the active transition at the OTCLK input to data appearing at the Output pin
2.17
2.49
ns
Propagation Times
TIOOP
The time it takes for data to travel from the IOB's O input to the Output pin The time it takes for data to travel from the O input through the OFF latch to the Output pin
LVCMOS25(2), 12mA output drive, Fast slew rate
1.94
2.23
ns
TIOOLP
2.17
2.49
ns
Set/Reset Times
TIOSRP
Time from asserting the OFF's SR input to setting/resetting data at the Output pin Time from asserting the Global Set Reset (GSR) net to setting/resetting data at the Output pin
LVCMOS25(2), 12mA output drive, Fast slew rate
2.85
3.28
ns
TIOGSRQ
8.07
9.28
ns
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5 and Table 8. 2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 20.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
17
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 19: Timing for the IOB Three-State Path Speed Grade -5 Symbol Description Conditions Max -4 Max Units
Synchronous Output Enable/Disable Times
TIOCKHZ
Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data
LVCMOS25, 12mA output drive, Fast slew rate
0.95
1.09
ns
TIOCKON(2)
2.31
2.65
ns
Asynchronous Output Enable/Disable Times
TGTS
Time from asserting the Global Three State net (GTS) net to when the Output pin enters the high-impedance state
LVCMOS25, 12mA output drive, Fast slew rate
7.03
8.08
ns
Set/Reset Times
TIOSRHZ
Time from asserting TFF's SR input to when the Output pin enters a high-impedance state Time from asserting TFF's SR input at TFF to when the Output pin drives valid data
LVCMOS25, 12mA output drive, Fast slew rate
1.71
1.96
ns
TIOSRON(2)
3.06
3.52
ns
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5 and Table 8. 2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, add the appropriate Output adjustment from Table 20.
18
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 20: Output Timing Adjustments for IOB (Continued) Add the Adjustment Below Speed Grade -5 1.51 1.32 Slow 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Fast 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA LVDCI_18 LVDCI_DV2_18 LVCMOS25 Slow 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Fast 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVDCI_25 LVDCI_DV2_25 5.49 3.45 2.84 2.62 2.11 2.07 2.50 1.15 0.96 0.87 0.79 0.76 0.81 0.67 6.43 4.15 3.38 2.99 2.53 2.50 2.22 3.27 1.87 0.32 0.19 0 -0.02 -0.04 0.27 0.16 -4 1.74 1.52 6.31 3.97 3.26 3.01 2.43 2.38 2.88 1.32 1.10 1.01 0.91 0.87 0.94 0.77 7.39 4.77 3.89 3.44 2.91 2.87 2.55 3.76 2.15 0.37 0.22 0 -0.01 -0.02 0.31 0.19 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Table 20: Output Timing Adjustments for IOB Add the Adjustment Below Speed Grade -5 -4 Units
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard Single-Ended Standards GTL GTL_DCI GTLP GTLP_DCI HSLVDCI_15 HSLVDCI_18 HSLVDCI_25 HSLVDCI_33 HSTL_I HSTL_I_DCI HSTL_III HSTL_III_DCI HSTL_I_18 HSTL_I_DCI_18 HSTL_II_18 HSTL_II_DCI_18 HSTL_III_18 HSTL_III_DCI_18 LVCMOS12 Slow 2 mA 4 mA 6 mA Fast 2 mA 4 mA 6 mA LVCMOS15 Slow 2 mA 4 mA 6 mA 8 mA 12 mA Fast 2 mA 4 mA 6 mA 8 mA 12 mA
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard LVDCI_15
0 0.13 0.03 0.23 1.51 0.81 0.27 0.28 0.60 0.59 0.19 0.20 0.18 0.17 -0.02 0.75 0.28 0.28 7.60 7.42 6.67 3.16 2.70 2.41 4.55 3.76 3.57 3.55 3.00 3.11 1.71 1.44 1.26 1.11
0.02 0.15 0.04 0.27 1.74 0.94 0.31 0.32 0.69 0.68 0.22 0.23 0.21 0.19 -0.01 0.86 0.32 0.32 8.73 8.53 7.67 3.63 3.10 2.77 5.23 4.32 4.11 4.09 3.45 3.57 1.96 1.66 1.44 1.27
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
LVDCI_DV2_15 LVCMOS18
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
19
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 20: Output Timing Adjustments for IOB (Continued) Add the Adjustment Below Speed Grade -5 6.38 4.83 4.01 3.92 2.91 2.81 2.49 3.86 1.87 0.62 0.61 0.16 0.14 0.06 0.28 0.26 Slow 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Fast 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA 7.27 4.94 3.98 3.98 2.97 2.84 2.65 4.32 1.87 1.27 1.19 0.42 0.27 0.16 -4 7.34 5.55 4.61 4.51 3.35 3.23 2.86 4.44 2.15 0.71 0.70 0.19 0.16 0.07 0.32 0.30 8.36 5.69 4.58 4.58 3.42 3.26 3.04 4.97 2.15 1.47 1.37 0.48 0.32 0.18 Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Table 20: Output Timing Adjustments for IOB (Continued) Add the Adjustment Below Speed Grade -5 0.74 0.71 0.07 0.22 0.23 0.19 0.13 0.10 -4 0.85 0.82 0.07 0.25 0.26 0.22 0.15 0.11 Units ns ns ns ns ns ns ns ns
R
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard LVCMOS33 Slow 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Fast 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA LVDCI_33 LVDCI_DV2_33 LVTTL
Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard PCI33_3 PCI66_3 SSTL18_I SSTL18_I_DCI SSTL2_I SSTL2_I_DCI SSTL2_II SSTL2_II_DCI Differential Standards LDT_25 (ULVDS_25) LVDS_25 BLVDS_25 LVDSEXT_25 LVPECL_25 RSDS_25
-0.06 -0.09 0.02 -0.15 0.16 0.05
-0.05 -0.07 0.04 -0.13 0.18 0.06
ns ns ns ns ns ns
Notes: 1. The numbers in this table are tested using the methodology presented in Table 21 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10. 2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.
20
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics LVTTL), then RT is set to 1M to indicate an open connection, and VT is set to zero. The same measurement point (VM) that was used at the Input is also used at the Output.
VT (VREF) FPGA Output RT (RREF) VM (VMEAS) CL (CREF)
ds099-3_07_012004
Timing Measurement Methodology
When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 21 presents the conditions to use for each standard. The method for measuring Input timing is as follows: A signal that swings between a Low logic level of VL and a High logic level of VH is applied to the Input under test. Some standards also require the application of a bias voltage to the VREF pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (VM) is commonly located halfway between VL and VH. The Output test setup is shown in Figure 4. A termination voltage VT is applied to the termination resistor RT, the other end of which is connected to the Output. For each standard, RT and VT generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (e.g., LVCMOS, Table 21: Test Methods for Timing Measurement at I/Os Inputs VREF Signal Standard
Single-Ended
Notes: 1. The names shown in parentheses are used in the IBIS file.
Figure 4: Output Test Setup
Outputs VH (V) VREF + 0.2 VREF + 0.2 VREF + 0.5 RT () 25 50 25 50 1M VT (V) 1.2 1.2 1.5 1.5 0
Inputs and Outputs VM (V) VREF VREF 0.75 0.90 1.25 1.65
VL (V) VREF - 0.2 VREF - 0.2 VREF - 0.5
(V) 0.8 1.0 0.9
GTL GTL_DCI GTLP GTLP_DCI HSLVDCI_15 HSLVDCI_18 HSLVDCI_25 HSLVDCI_33 HSTL_I HSTL_I_DCI HSTL_III HSTL_III_DCI HSTL_I_18 HSTL_I_DCI_18 HSTL_II_18 HSTL_II_DCI_18 HSTL_III_18 HSTL_III_DCI_18 LVCMOS12
0.75 0.90 0.90 0.90 1.1 -
VREF - 0.5 VREF - 0.5 VREF - 0.5 VREF - 0.5 VREF - 0.5 0
VREF + 0.5 VREF + 0.5 VREF + 0.5 VREF + 0.5 VREF + 0.5 1.2
50 50 50 50 50 50 25 50 50 50 1M
0.75 0.75 1.5 1.5 0.9 0.9 0.9 0.9 1.8 1.8 0
VREF VREF VREF VREF VREF 0.6
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
21
Spartan-3 FPGA Family: DC and Switching Characteristics Table 21: Test Methods for Timing Measurement at I/Os (Continued) Inputs VREF Signal Standard LVCMOS15 LVDCI_15 LVDCI_DV2_15 LVCMOS18 LVDCI_18 LVDCI_DV2_18 LVCMOS25 LVDCI_25 LVDCI_DV2_25 LVCMOS33 LVDCI_33 LVDCI_DV2_33 LVTTL PCI33_3 SSTL18_I SSTL18_I_DCI SSTL2_I SSTL2_I_DCI SSTL2_II SSTL2_II_DCI
Differential
R
Outputs VH (V) 1.5 RT () 1M 1M 1M VT (V) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.3 0.9 0.9 1.25 1.25 1.25 1.25 0.6 1.2 0 0 1.2 0 1.2
Inputs and Outputs VM (V) 0.75
VL (V) 0
(V) -
-
0
1.8
1M 1M 1M
0.9
-
0
2.5
1M 1M 1M
1.25
-
0
3.3
1M 1M 1M
1.65
Rising Falling 0.9 1.25 1.25 -
0 Note 3 VREF - 0.5 VREF - 0.75 VREF - 0.75
3.3 Note 3 VREF + 0.5 VREF + 0.75 VREF + 0.75
1M 25 25 50 50 50 50 25 50
1.4 0.94 2.03 VREF VREF VREF
LDT_25 (ULVDS_25) LVDS_25 LVDS_25_DCI BLVDS_25 LVDSEXT_25 LVDSEXT_25_DCI LVPECL_25 RSDS_25
-
0.6 - 0.125 1.2 - 0.125 1.2 - 0.125 1.2 - 0.125 1.6 - 0.3 1.3 - 0.1
0.6 + 0.125 1.2 + 0.125 1.2 + 0.125 1.2 + 0.125 1.6 + 0.3 1.3 + 0.1
60 50 1M 1M 50 1M 50
0.6 1.2 1.2 1.2 1.6 1.2
Notes: 1. Descriptions of the relevant symbols are as follows: VREF -- The reference voltage for setting the input switching threshold VM -- Voltage of measurement point on signal transition VL -- Low-level test voltage at Input pin VH -- High-level test voltage at Input pin RT -- Effective termination resistance, which takes on a value of 1M when no parallel termination is required VT -- Termination voltage The load capacitance (CL) at the Output pin is 0 pF for all signal standards. According to the PCI specification.
2. 3.
22
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics IBIS models are found in the Xilinx development software as well as at the following link:
http://www.xilinx.com/support/sw_ibis.htm
The capacitive load (CL) is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a CL value of zero. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.
Simulate delays for a given application according to its specific load conditions as follows: 1. Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 4. Use parameter values VT, RT, and VM from Table 21. CREF is zero. 2. Record the time to VM. 3. Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including VREF, RREF, CREF, and VMEAS values) or capacitive value to represent the load. 4. Record the time to VMEAS. 5. Compare the results of steps 2 and 4. The increase (or decrease) in delay should be added to (or subtracted from) the appropriate Output standard adjustment (Table 20) to yield the worst-case delay of the PCB trace.
Using IBIS Models to Simulate Load Conditions in Application
IBIS Models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (VREF, RREF, and VMEAS) correspond directly with the parameters used in Table 21, VT, RT, and VM. Do not confuse VREF (the termination voltage) from the IBIS model with VREF (the input-switching threshold) from the table. A fourth parameter, CREF, is always zero. The four parameters describe all relevant output test conditions.
Simultaneously Switching Output Guidelines
Table 22: Equivalent VCCO/GND Pairs per Bank Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 VQ100 1 1 TQ144(1) 1.5 1.5 1.5 PQ208 2 2 2 FT256 3 3 3 FG320 3 3 3 FG456 5 5 5 FG676 5 6 6 FG900 9 10 10 FG1156 12 12
Notes: 1. The VCCO lines for the pair of banks on each side of the TQ package are internally tied together. Each pair of interconnected banks has three VCCO/GND pairs. 2. The information in this table also applies to Pb-free packages.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
23
Spartan-3 FPGA Family: DC and Switching Characteristics Table 23: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (Continued)
Package
R
Table 23: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair
Package FT256, FG320, FG456, FG676, VQ100 TQ144 PQ208 FG900, FG1156
Signal Standard Single-Ended Standards GTL GTL_DCI GTLP GTLP_DCI HSLVDCI_15 HSLVDCI_18 HSLVDCI_25 HSLVDCI_33 HSTL_I HSTL_I_DCI HSTL_III HSTL_III_DCI HSTL_I_18 HSTL_I_DCI_18 HSTL_II_18 HSTL_II_DCI_18 HSTL_III_18 HSTL_III_DCI_18 LVCMOS12 Slow 2 4 6 Fast 2 4 6 LVCMOS15 Slow 2 4 6 8 12 Fast 2 4 6 8 12 LVDCI_15 LVDCI_DV2_15
Signal Standard LVCMOS18 Slow 2 4 6 8 12 16 Fast 2 4 6 8 12 16 LVDCI_18 LVDCI_DV2_18 LVCMOS25 Slow 2 4 6 8 12 16 24 Fast 2 4 6 8 12 16 24 LVDCI_25 LVDCI_DV2_25
FT256, FG320, FG456, FG676, VQ100 TQ144 PQ208 FG900, FG1156 16 8 5 4 3 2 9 4 2 2 1 16 10 7 4 3 2 1 10 4 3 2 2 1 1 1 10 5 2 2 1 1 5 2 1 1 0 9 5 4 2 2 1 1 5 2 2 1 1 1 6 3 2 2 1 4 1 1 5 3 2 2 1 3 1 1 64 34 22 18 13 10 36 21 13 10 9 6 10 10 76 46 33 24 18 11 7 42 20 15 13 11 8 5 11 11
1 3 3 1 1 3 3 1 2 1 1 17 10 5 6 4 2 16 8 5 3 2 7 4 2 2 -
1 1 1 1 1 1 1 1 8 5 3 4 1 1 8 5 3 2 1 4 2 2 1 -
1 1 1 1 5 2 2 2 1 1 6 2 2 1 3 1 1 -
4 4 4 4 14 10 11 9 17 14 7 7 17 17 1 9 8 8 55 32 18 31 13 9 55 31 18 15 10 25 16 13 11 7 14 14
24
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics Table 23: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (Continued)
Package FT256, FG320, FG456, FG676, VQ100 TQ144 PQ208 FG900, FG1156 1 1 2 3 2 2 1 2 1 1 1 1 1 1 1 1 1 7 7 17 17 13 13 9 9
Table 23: Recommended Number of Simultaneously Switching Outputs per VCCO-GND Pair (Continued)
Package FT256, FG320, FG456, FG676, VQ100 TQ144 PQ208 FG900, FG1156 2 4 6 8 12 16 24 Fast 2 4 6 8 12 16 24 LVDCI_33 LVDCI_DV2_33 LVTTL Slow 2 4 6 8 12 16 24 Fast 2 4 6 8 12 16 24 15 7 7 4 2 2 2 8 4 3 2 1 1 1 13 8 7 4 2 2 2 6 3 3 2 1 1 1 8 4 3 2 1 1 1 4 2 2 1 1 1 8 4 3 2 1 1 1 4 2 2 1 1 1 4 3 2 2 1 1 1 2 1 1 1 4 3 2 2 1 1 1 2 1 1 1 76 46 27 20 13 10 9 44 26 16 12 10 7 3 9 9 60 41 29 22 13 11 9 34 20 15 12 10 9 5
Signal Standard LVCMOS33 Slow
Signal Standard PCI33_3 PCI66_3 SSTL18_I SSTL18_I_DCI SSTL2_I SSTL2_I_DCI SSTL2_II SSTL2_II_DCI
Differential Standards (Number of I/O Pairs) LDT_25 (ULVDS_25) LVDS_25 LVDS_25_DCI BLVDS_25 LVDSEXT_25 LVDSEXT_25_DCI LVPECL_25 RSDS_25 4 4 4 2 4 4 2 4 4 4 4 1 4 4 1 4 4 4 4 1 4 4 1 4 4 4 4 4 4 4 4 4
Notes: 1. The numbers in this table are recommendations that assume sound board layout practice. 2. Regarding the SSO numbers for all DCI standards, the RREF resistors connected to the VRN and VRP pins of the FPGA are 50. 3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: "Managing Ground Bounce in Large FPGAs" for information on how to perform weighted average SSO calculations.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
25
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Internal Logic Timing
Table 24: CLB Timing Speed Grade -5 Symbol
Clock-to-Output Times
-4 Max Min Max Units
Description
Min
TCKO
When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output
-
0.63
-
0.72
ns
Setup Times
TAS
Time from the setup of data at the F or G input to the active transition at the CLK input of the CLB Time from the setup of data at the BX or BY input to the active transition at the CLK input of the CLB
0.46
-
0.53
-
ns
TDICK
0.18
-
0.21
-
ns
Hold Times
TAH
Time from the active transition at the CLK input to the point where data is last held at the F or G input Time from the active transition at the CLK input to the point where data is last held at the BX or BY input
0
-
0
-
ns
TCKDI
0.25
-
0.29
-
ns
Clock Timing
TCH TCL FTOG
Propagation Times
The High pulse width of the CLB's CLK signal The Low pulse width of the CLK signal Maximum toggle frequency (for export control)
0.66 0.66 -
750
0.76 0.76 -
650
ns ns MHz
TILO
Set/Reset Times
The time it takes for data to travel from the CLB's F (G) input to the X (Y) output
-
0.53
-
0.61
ns
TRPW
The pulse width, High or Low, of the CLB's SR signal
0.66
-
0.76
-
ns
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5. 2. The timing shown is for SLICEM CLBs.
26
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 25: Synchronous 18 x 18 Multiplier Timing Speed Grade -5 Symbol
Clock-to-Output Times
-4 Max Min Max Units
Description
P Outputs
Min
TMULTCK
When reading from the Multiplier, the time from the active transition at the C clock input to data appearing at the P outputs
P[0] P[15] P[17] P[19] P[23] P[31] P[35]
-
1.00 1.15 1.30 1.45 1.76 2.37 2.67
-
1.15 1.32 1.50 1.67 2.02 2.72 3.07
ns ns ns ns ns ns ns
Setup Times
TMULIDCK
Time from the setup of data at the A and B inputs to the active transition at the C input of the Multiplier
-
1.84
-
2.11
-
ns
Hold Times
TMULCKID
Time from the active transition at the Multiplier's C input to the point where data is last held at the A and B inputs
-
0
-
0
-
ns
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5.
Table 26: Asynchronous 18 x 18 Multiplier Timing Speed Grade -5 Symbol
Propagation Times
-4 Max Units
Description
P Outputs
Max
TMULT
The time it takes for data to travel from the A and B inputs to the P outputs
P[0] P[15] P[17] P[19] P[23] P[31] P[35]
1.55 3.15 3.36 3.49 3.73 4.23 4.47
1.78 3.62 3.86 4.01 4.29 4.86 5.14
ns ns ns ns ns ns ns
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
27
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 27: Block RAM Timing Speed Grade -5 Symbol
Clock-to-Output Times
-4 Max Min Max Units
Description
Min
TBCKO
When reading from the Block RAM, the time from the active transition at the CLK input to data appearing at the DOUT output
-
2.09
-
2.40
ns
Setup Times
TBDCK
Time from the setup of data at the DIN inputs to the active transition at the CLK input of the Block RAM
0.43
-
0.49
-
ns
Hold Times
TBCKD
Time from the active transition at the Block RAM's CLK input to the point where data is last held at the DIN inputs
0
-
0
-
ns
Clock Timing
TBPWH TBPWL
The High pulse width of the Block RAM's CLK signal The Low pulse width of the CLK signal
1.19 1.19
-
1.37 1.37
-
ns ns
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5.
28
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Digital Clock Manager (DCM) Timing
For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS). Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 28 and Table 29) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 30 through Table 33) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 28 and Table 29. Period jitter and cycle-cycle jitter are two (of many) different ways of characterizing clock jitter. Both specifications describe statistical variation from a mean value. Period jitter is the worst-case deviation from the average clock period of all clock cycles in the collection of clock periods sampled (usually from 100,000 to more than a million samples for specification purposes). In a histogram of period jitter, the mean value is the clock period. Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.
Table 28: Recommended Operating Conditions for the DLL
Speed Grade Device Revision Frequency Mode/ FCLKIN Range Low High -5 Min 24(2) 48 Max 167(3) 280(3) Min 24(2) 48 -4 Max 165(3) 280(3) Units
Symbol Input Frequency Ranges FCLKIN CLKIN_FREQ_DLL_LF CLKIN_FREQ_DLL_HF Input Pulse Requirements CLKIN_PULSE
Description
Frequency for the CLKIN input
All
MHz MHz
CLKIN pulse width as a percentage of the CLKIN period
0
FCLKIN < 100 MHz FCLKIN > 100 MHz
40% 45%
60% 55%
40% 45%
60% 55%
-
Input Clock Jitter and Delay Path Variation CLKIN_CYC_JITT_DLL_LF CLKIN_CYC_JITT_DLL_HF CLKIN_PER_JITT_DLL_LF CLKIN_PER_JITT_DLL_HF CLKFB_DELAY_VAR_EXT Cycle-to-cycle jitter at the CLKIN input Period jitter at the CLKIN input Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input All Low High All -261 -131 -0.87 +261 +131 +0.87 -300 -150 -1 +300 +150 +1 ps ps ns
All
-0.87
+0.87
-1
+1
ns
Notes: 1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use. 2. Use of the DFS permits lower FCLKIN frequencies. See Table 30. 3. To double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
29
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 29: Switching Characteristics for the DLL
Speed Grade Frequency Mode / FCLKIN Range -5 Device Min Max Min -4 Max Units
Symbol Output Frequency Ranges CLKOUT_FREQ_1X_LF
Description
Frequency for the CLK0, CLK90, CLK180, and CLK270 outputs Frequency for the CLK0 and CLK180 outputs Frequency for the CLK2X and CLK2X180 outputs Frequency for the CLKDV output
Low
All
24
167
24
165
MHz
CLKOUT_FREQ_1X_HF CLKOUT_FREQ_2X_LF(3) CLKOUT_FREQ_DV_LF CLKOUT_FREQ_DV_HF Output Clock Jitter CLKOUT_PER_JITT_0 CLKOUT_PER_JITT_90 CLKOUT_PER_JITT_180 CLKOUT_PER_JITT_270 CLKOUT_PER_JITT_2X CLKOUT_PER_JITT_DV1
High Low Low High
48 48 1.5 3
280 334 110 185
48 48 1.5 3
280 330 110 185
MHz MHz MHz MHz
Period jitter at the CLK0 output Period jitter at the CLK90 output Period jitter at the CLK180 output Period jitter at the CLK270 output Period jitter at the CLK2X and CLK2X180 outputs Period jitter at the CLKDV output when performing integer division Period jitter at the CLKDV output when performing non-integer division
All
All
-100 -150 -150 -150 -200 -150
+100 +150 +150 +150 +200 +150
-100 -150 -150 -150 -200 -150
+100 +150 +150 +150 +200 +150
ps ps ps ps ps ps
CLKOUT_PER_JITT_DV2
-300
+300
-300
+300
ps
Duty Cycle CLKOUT_DUTY_CYCLE_DLL(4) Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs All XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 Phase Alignment CLKIN_CLKFB_PHASE CLKOUT_PHASE Phase offset between the CLKIN and CLKFB inputs Phase offset between any two DLL outputs (except CLK2X and CLK0) Phase offset between the CLK2X and CLK0 outputs All All -150 -140 +150 +140 -150 -140 +150 +140 ps ps -150 -150 -250 -400 -400 +150 +150 +250 +400 +400 -150 -150 -250 -400 -400 +150 +150 +250 +400 +400 ps ps ps ps ps ps ps ps
-250
+250
-250
+250
ps
30
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 29: Switching Characteristics for the DLL (Continued)
Speed Grade Frequency Mode / FCLKIN Range -5 Device Min Max Min -4 Max Units
Symbol Lock Time LOCK_DLL
Description
When using the DLL alone: The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase
24 MHz < FCLKIN < 30 MHz 30 MHz < FCLKIN < 40 MHz 40 MHz < FCLKIN < 50 MHz 50 MHz < FCLKIN < 60 MHz FCLKIN > 60 MHz
All
-
2.88 2.16 1.20 0.60 0.48
-
2.88 2.16 1.20 0.60 0.48
ms ms ms ms ms
Delay Lines DCM_TAP Delay tap resolution All All 30.0 60.0 30.0 60.0 ps
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 28. 2. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use. 3. For all Spartan-3 devices except the XC3S50 and the XC3S1000, use feedback from the CLK0 output (instead of the CLK2X output) and set the CLK_FEEDBACK attribute to 1X. 4. This specification only applies if the attribute DUTY_CYCLE_CORRECTION = TRUE.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
31
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Table 30: Recommended Operating Conditions for the DFS
Speed Grade Symbol Input Frequency Ranges(2) FCLKIN CLKIN_FREQ_FX_LF CLKIN_FREQ_FX_HF Input Clock Jitter CLKIN_CYC_JITT_FX_LF CLKIN_CYC_JITT_FX_HF CLKIN_PER_JITT_FX_LF CLKIN_PER_JITT_FX_HF Notes: 1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are in use. 2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 28. Cycle-to-cycle jitter at the CLKIN input Period jitter at the CLKIN input Low High All -261 -131 -0.87 +261 +131 +0.87 -300 -150 -1 +300 +150 +1 ps ps ns Frequency for the CLKIN input Low High 1 48 210 280 1 48 210 280 MHz MHz Description Frequency Mode -5 Min Max Min -4 Max Units
Table 31: Switching Characteristics for the DFS
Speed Grade Symbol Output Frequency Ranges CLKOUT_FREQ_FX_LF CLKOUT_FREQ_FX_HF Output Clock Jitter CLKOUT_PER_JITT_FX Duty Cycle(4) CLKOUT_DUTY_CYCLE_FX Duty cycle precision for the CLKFX and CLKFX180 outputs All XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 Phase Alignment CLKOUT_PHASE Lock Time LOCK_DLL_FX When using the DFS in conjunction with the DLL: The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase. When using the DFS without the DLL: The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. By asserting the LOCKED signal, the DFS indicates valid CLKFX and CLKFX180 signals. All All 10.0 10.0 ms Phase offset between the DFS output and the CLK0 output All All -300 +300 -300 +300 ps -100 -100 -250 -400 -400 +100 +100 +250 +400 +400 -100 -100 -250 -400 -400 +100 +100 +250 +400 +400 ps ps ps ps ps ps ps ps Period jitter at the CLKFX and CLKFX180 outputs All All Note 3 Note 3 Note 3 Note 3 ps Frequency for the CLKFX and CLKFX180 outputs Low High All 24 210 210 280 24 210 210 280 MHz MHz Description Frequency Mode -5 Device Min Max Min -4 Max Units
LOCK_FX
All
All
-
10.0
-
10.0
ms
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 30. 2. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use. 3. Use the Virtex-IITM Jitter Calculator at http://www.xilinx.com/applications/web_ds_v2/jitter_calc.htm. 4. The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.
32
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics only permits positive shifts. For any desired negative phase shift (-S), an equivalent positive phase shift (360 - S) is possible.
Phase Shifter (PS)
Phase Shifter operation is only supported in the Low frequency mode. For Rev. 0 devices, the Variable Phase mode
Table 32: Recommended Operating Conditions for the PS in Variable Phase Mode
Speed Grade Device Revision Frequency Mode/ FCLKIN Range -5 Min Max Min -4 Max Units
Symbol
Description
Operating Frequency Ranges PSCLK_FREQ (FPSCLK) Frequency for the PSCLK input All Low 1 165 1 165 MHz
Input Pulse Requirements PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period 0 Low FCLKIN < 100 MHz FCLKIN > 100 MHz 40% 45% 60% 55% 40% 45% 60% 55% -
Notes: 1. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.
Table 33: Switching Characteristics for the PS in Variable Phase Mode
Speed Grade Frequency Mode/ FCLKIN Range -5 Min Max Min -4 Max Units
Symbol Phase Shifting Range FINE_SHIFT_RANGE Lock Time LOCK_DLL_PS
Description
Range for variable phase shifting
Low
-
10.0
-
10.0
ns
When using the PS in conjunction with the DLL: The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase. When using the PS in conjunction with the DLL and DFS: The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase.
24 MHz < FCLKIN < 30 MHz 30 MHz < FCLKIN < 40 MHz 40 MHz < FCLKIN < 50 MHz 50 MHz < FCLKIN < 60 MHz 60 MHz < FCLKIN < 165 MHz Low
-
3.28 2.56 1.60 1.00 0.88 10.40
-
3.28 2.56 1.60 1.00 0.88 10.40
ms ms ms ms ms ms
LOCK_DLL_PS_FX
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 32. 2. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
33
Spartan-3 FPGA Family: DC and Switching Characteristics
R
Configuration and JTAG Timing
VCCINT (Supply) VCCAUX (Supply) VCCO Bank 4 (Supply) PROG_B (Input) INIT_B (Open-Drain) CCLK (Output)
DS099-3_03_120604
1.2V 1.0V 2.5V 2.0V
1.0V TPOR
TPROG
TPL
TICCK
Notes: 1. The VCCINT, VCCAUX, and VCCO supplies may be applied in any order. 2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle. 3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).
Figure 5: Waveforms for Power-On and the Beginning of Configuration Table 34: Power-On Timing and the Beginning of Configuration
All Speed Grades Symbol TPOR(2) Description The time from the application of VCCINT, VCCAUX, and VCCO Bank 4 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin Device XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 TPROG TPL(2) The width of the low-going pulse on the PROG_B pin The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin All XC3S50 XC3S200 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S5000 TICCK(3) The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin All Min 0.3 0.5 Max 5 5 5 5 7 7 7 7 2 2 2 2 3 3 3 3 4.0 Units ms ms ms ms ms ms ms ms s ms ms ms ms ms ms ms ms s
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5. This means power must be applied to all VCCINT, VCCO, and VCCAUX lines. 2. Power-on reset and the clearing of configuration memory occurs during this period. 3. This specification applies only for the Master Serial and Master Parallel modes.
34
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
PROG_B (Input)
INIT_B (Open-Drain) TCCL CCLK (Input/Output) TDCC DIN (Input) TCCD Bit 0 Bit 1 1/FCCSER Bit n Bit n+1 TCCO DOUT (Output) Bit n-64 Bit n-63
DS099-3_04_071604
TCCH
Figure 6: Waveforms for Master and Slave Serial Configuration Table 35: Timing for the Master and Slave Serial Configuration Modes Slave/ Master All Speed Grades Min Max Units
Symbol
Clock-to-Output Times
Description
TCCO
The time from the falling transition on the CCLK pin to data appearing at the DOUT pin
Both
1.5
12.0
ns
Setup Times
TDCC
Hold Times
The time from the setup of data at the DIN pin to the rising transition at the CCLK pin
Both
10.0
-
ns
TCCD
The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin
Both
0
-
ns
Clock Timing
TCCH TCCL FCCSER FCCSER
The High pulse width at the CCLK input pin The Low pulse width at the CCLK input pin Frequency of the clock signal at the CCLK input pin No bitstream compression With bitstream compression
Slave
5.0 5.0 -
66(2) 20 +50%
ns ns MHz MHz -
Variation from the CCLK output frequency set using the ConfigRate BitGen option
Master
-50%
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5. 2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
35
Spartan-3 FPGA Family: DC and Switching Characteristics
R
PROG_B (Input)
INIT_B (Open-Drain) TSMCSCC CS_B (Input) TSMCCW RDWR_B (Input) TCCH CCLK (Input/Output) TSMDCC D0 - D7 (Inputs) TSMCCD 1/FCCPAR TCCL TSMWCC TSMCCCS
Byte 0
Byte 1 TSMCKBY
Byte n TSMCKBY
Byte n+1
BUSY (Output)
High-Z BUSY
High-Z
DS099-3_05_041103
Notes: 1. Switching RDWR_B High or Low while holding CS_B Low asynchronously aborts configuration.
Figure 7: Waveforms for Master and Slave Parallel Configuration
Table 36: Timing for the Master and Slave Parallel Configuration Modes Symbol
Clock-to-Output Times
Description The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin The time from the setup of a logic level at the CS_B pin to the rising transition at the CCLK pin The time from the setup of a logic level at the RDWR_B pin to the rising transition at the CCLK pin
Slave/ Master Slave
All Speed Grades Min Max 12.0 Units ns
TSMCKBY
Setup Times
TSMDCC TSMCSCC TSMCCW(2)
Both
10.0 10.0 10.0
-
ns ns ns
36
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Table 36: Timing for the Master and Slave Parallel Configuration Modes (Continued) Symbol
Hold Times
Description The time from the rising transition at the CCLK pin to the point when data is last held at the D0-D7 pins The time from the rising transition at the CCLK pin to the point when a logic level is last held at the CS_B pin The time from the rising transition at the CCLK pin to the point when a logic level is last held at the RDWR_B pin The High pulse width at the CCLK input pin The Low pulse width at the CCLK input pin Frequency of the clock signal at the CCLK input pin No bitstream compression Not using the BUSY pin(3) Using the BUSY pin
Slave/ Master Both
All Speed Grades Min 0 0 0 Max Units ns ns ns
TSMCCD TSMCCCS TSMWCC(2)
Clock Timing
TCCH TCCL FCCPAR
Slave
5 5 -
50 66 20 +50%
ns ns MHz MHz MHz -
With bitstream compression Master
FCCPAR
Variation from the CCLK output frequency set using the BitGen option ConfigRate
-50%
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5. 2. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the driver impedance of the D0 - D7 pins. To avoid contention when writing configuration data to the D0 - D7 bus, do not bring RDWR_B High when CS_B is Low. 3. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification. 4. Some Xilinx documents may refer to Parallel modes as "SelectMAP" modes.
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
37
Spartan-3 FPGA Family: DC and Switching Characteristics
R
TCCH
TCCL
TCK (Input)
TTMSTCK TTCKTMS 1/FTCK
TMS (Input)
TTDITCK TTCKTDI
TDI (Input)
TTCKTDO
TDO (Output)
DS099_06_040703
Figure 8: JTAG Waveforms
Table 37: Timing for the JTAG Test Access Port All Speed Grades Symbol
Clock-to-Output Times
Description
Min
Max
Units
TTCKTDO
Setup Times
The time from the falling transition on the TCK pin to data appearing at the TDO pin
1.0
11.0
ns
TTDITCK TTMSTCK
Hold Times
The time from the setup of data at the TDI pin to the rising transition at the TCK pin The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin
7.0 7.0
-
ns ns
TTCKTDI TTCKTMS
The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin
0 0
-
ns ns
Clock Timing
TCCH TCCL FTCK
The High pulse width at the TCK pin The Low pulse width at the TCK pin Frequency of the TCK signal
5 5 -
33
ns ns MHz
Notes: 1. The numbers in this table are based on the operating conditions set forth in Table 5.
38
www.xilinx.com
DS099-3 (v1.5) December 17, 2004 Advance Product Specification
R
Spartan-3 FPGA Family: DC and Switching Characteristics
Revision History
Date 04/11/03 07/11/03 02/06/04 Version No. 1.0 1.1 1.2 Initial Xilinx release. Extended Absolute Maximum Rating for junction temperature in Table 1. Added numbers for typical quiescent supply current (Table 7) and DLL timing. Revised VIN maximum rating (Table 1). Added power-on requirements (Table 3), leakage current number (Table 6), and differential output voltage levels (Table 11) for Rev. 0. Published new quiescent current numbers (Table 7). Updated pull-up and pull-down resistor strengths (Table 6). Added LVDCI_DV2 and LVPECL standards (Table 10 and Table 11). Changed CCLK setup time (Table 35 and Table 36). Added timing numbers from v1.29 speed files as well as DCM timing (Table 28 through Table 33). Added reference to errata documents on page 1. Clarified Absolute Maximum Ratings and added ESD information (Table 1). Explained VCCO ramp time measurement (Table 3). Clarified IL specification (Table 6). Updated quiescent current numbers and added information on power-on and surplus current (Table 7). Adjusted VREF range for HSTL_III and HSTL_I_18 and changed VIH min for LVCMOS12 (Table 8). Added note limiting VTT range for SSTL2_II signal standards (Table 9). Calculated VOH and VOL levels for differential standards (Table 11). Updated Switching Characteristics with speed file v1.32 (Table 13 through Table 21 and Table 24 through Table 27). Corrected IOB test conditions (Table 14). Updated DCM timing with latest characterization data (Table 28 through Table 32). Improved DCM CLKIN pulse width specification (Table 28). Recommended use of Virtex-II Jitter calculator (Table 31). Improved DCM PSCLK pulse width specification (Table 32). Changed Phase Shifter lock time parameter (Table 33). Because the BitGen option Centered_x#_y# is not necessary for Variable Phase Shift mode, removed BitGen command table and referring text. Adjusted maximum CCLK frequency for the slave serial and parallel configuration modes (Table 35). Inverted CCLK waveform (Figure 6). Adjusted JTAG setup times (Table 37). Updated timing parameters to match v1.35 speed file. Improved VCCO ramp time specification (Table 3). Added a note limiting the rate of change of VCCAUX (Table 5). Added typical quiescent current values for the XC3S2000, XC3S4000, and XC3S5000 (Table 7). Increased IOH and IOL for SSTL2-I and SSTL2-II standards (Table 9). Added SSO guidelines for the VQ, TQ, and PQ packages as well as edited SSO guidelines for the FT and FG packages (Table 23). Added maximum CCLK frequencies for configuration using compressed bitstreams (Table 35 and Table 36). Added specifications for the HSLVDCI standards (Table 8, Table 9, Table 17, Table 20, Table 21, and Table 23). Description
03/04/04 08/24/04
1.3 1.4
12/17/04
1.5
The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1) DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2) DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3) DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)
DS099-3 (v1.5) December 17, 2004 Advance Product Specification 39
www.xilinx.com
39
0112
R
Spartan-3 FPGA Family: Pinout Descriptions
0 0
DS099-4 (v1.6) January 17, 2005
Product Specification
Introduction
This data sheet module describes the various pins on a SpartanTM-3 FPGA and how they connect to the supported component packages. * * * The Pin Types section categorizes all of the FPGA pins by their function type. The Pin Definitions section provides a top-level description for each pin on the device. The Detailed, Functional Pin Descriptions section offers significantly more detail about each pin, especially for the dual- or special-function pins used during device configuration. Some pins have associated 4 behavior, controlled by settings in the configuration bitstream. These options are described in the Bitstream Options section. * The Package Overview section describes the various packaging options available for Spartan-3 FPGAs. Detailed pin list tables and footprint diagrams are provided for each package solution.
Pin Descriptions
Pin Types
A majority of the pins on a Spartan-3 FPGA are general-purpose, user-defined I/O pins. There are, however, up to 12 different functional types of pins on Spartan-3 packages, as outlined in Table 1. In the package footprint drawings that follow, the individual pins are color-coded according to pin type as in the table.
*
Table 1: Types of Pins on Spartan-3 FPGAs Type/ Color Code I/O DUAL
Description Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os. Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. There are 12 dual-purpose configuration pins on every package.
Pin Name(s) in Type IO, IO_Lxxy_# IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1, IO_Lxxy_#/D2, IO_Lxxy_#/D3, IO_Lxxy_#/D4, IO_Lxxy_#/D5, IO_Lxxy_#/D6, IO_Lxxy_#/D7, IO_Lxxy_#/CS_B, IO_Lxxy_#/RDWR_B, IO_Lxxy_#/BUSY/DOUT, IO_Lxxy_#/INIT_B CCLK, DONE, M2, M1, M0, PROG_B, HSWAP_EN TDI, TMS, TCK, TDO
CONFIG
Dedicated configuration pin. Not available as a user-I/O pin. Every package has seven dedicated configuration pins. These pins are powered by VCCAUX. Dedicated JTAG pin. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX. Dual-purpose pin that is either a user-I/O pin or used to calibrate output buffer impedance for a specific bank using Digital Controlled Impedance (DCI). There are two DCI pins per I/O bank. Dual-purpose pin that is either a user-I/O pin or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected.
JTAG
DCI
IO/VRN_# IO_Lxxy_#/VRN_# IO/VRP_# IO_Lxxy_#/VRP_# IO/VREF_# IO_Lxxy_#/VREF_#
VREF
(c) 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
DS099-4 (v1.6) January 17, 2005 Preliminary Product Specification
www.xilinx.com
1
Spartan-3 FPGA Family: Pinout Descriptions Table 1: Types of Pins on Spartan-3 FPGAs (Continued) Type/ Color Code GND VCCAUX
R
Description Dedicated ground pin. The number of GND pins depends on the package used. All must be connected. Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected to +2.5V. Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V. Dedicated I/O bank, output buffer power supply pin. Along with other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards. Dual-purpose pin that is either a user-I/O pin or an input to a specific global buffer input. Every package has eight dedicated GCLK pins. This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package. GND VCCAUX
Pin Name(s) in Type
VCCINT
VCCINT
VCCO
VCCO_# TQ144 Package Only: VCCO_LEFT, VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1, IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3, IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5, IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7 N.C.
GCLK
N.C.
Notes: 1. # = I/O bank number, an integer between 0 and 7.
I/Os with Lxxy_# are part of a differential output pair. `L' indicates differential output capability. The "xx" field is a two-digit integer, unique to each bank that identifies a differential pin-pair. The `y' field is either `P' for the true signal or `N' for the inverted signal in the differential pair. The `#' field is the I/O bank number.
Pin Definitions
Table 2 provides a brief description of each pin listed in the Spartan-3 pinout tables and package footprint diagrams. Pins are categorized by their pin type, as listed in Table 1. See Detailed, Functional Pin Descriptions for more information.
2
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 2: Spartan-3 Pin Definitions Pin Name I/O: General-purpose I/O pins I/O User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output
User I/O:
Direction
Description
Unrestricted single-ended user-I/O pin. Supports all I/O standards except the differential standards.
I/O_Lxxy_#
User I/O, Half of Differential Pair:
Unrestricted single-ended user-I/O pin or half of a differential pair. Supports all I/O standards including the differential standards.
DUAL: Dual-purpose configuration pins IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1, IO_Lxxy_#/D2, IO_Lxxy_#/D3, IO_Lxxy_#/D4, IO_Lxxy_#/D5, IO_Lxxy_#/D6, IO_Lxxy_#/D7 IO_Lxxy_#/CS_B Input during configuration Possible bidirectional I/O after configuration if SelectMap port is retained Otherwise, user I/O after configuration Input during Parallel mode configuration Possible input after configuration if SelectMap port is retained Otherwise, user I/O after configuration IO_Lxxy_#/RDWR_B Input during Parallel mode configuration Possible input after configuration if SelectMap port is retained Otherwise, user I/O after configuration IO_Lxxy_#/ BUSY/DOUT Output during configuration Possible output after configuration if SelectMap port is retained Otherwise, user I/O after configuration
Configuration Data Rate Control for Parallel Mode, Serial Data Output for Serial Mode: Read/Write Control for Parallel Mode Configuration: Configuration Data Port:
In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained via the Persist bitstream option. In Serial modes, DIN (D0) serves as the single configuration data input. This pin becomes a user I/O after configuration unless retained by the Persist bitstream option.
Chip Select for Parallel Mode Configuration:
In Parallel (SelectMAP) modes, this is the active-Low Chip Select signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.
In Parallel (SelectMAP) modes, this is the active-Low Write Enable, active-High Read Enable signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.
In Parallel (SelectMAP) modes, BUSY throttles the rate at which configuration data is loaded. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option. In Serial modes, DOUT provides preamble and configuration data to downstream devices in a multi-FPGA daisy-chain. This pin becomes a user I/O after configuration.
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
3
Spartan-3 FPGA Family: Pinout Descriptions Table 2: Spartan-3 Pin Definitions (Continued) Pin Name IO_Lxxy_#/INIT_B Direction Bidirectional (open-drain) during configuration User I/O after configuration Description
Initializing Configuration Memory/Detected Configuration Error:
R
When Low, this pin indicates that configuration memory is being cleared. When held Low, this pin delays the start of configuration. After this pin is released or configuration memory is cleared, the pin goes High. During configuration, a Low on this output indicates that a configuration data error occurred. This pin becomes a user I/O after configuration.
DCI: Digitally Controlled Impedance reference resistor input pins IO_Lxxy_#/VRN_# or IO/VRN_# Input when using DCI Otherwise, same as I/O
DCI Reference Resistor for NMOS I/O Transistor (per bank):
If using DCI, a 1% precision impedance-matching resistor is connected between this pin and the VCCO supply for this bank. Otherwise, this pin is a user I/O.
DCI Reference Resistor for PMOS I/O Transistor (per bank):
IO_Lxxy_#/VRP_# or IO/VRP_#
Input when using DCI Otherwise, same as I/O
If using DCI, a 1% precision impedance-matching resistor is connected between this pin and the ground supply. Otherwise, this pin is a user I/O.
GCLK: Global clock buffer inputs IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1, IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3, IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5, IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7 Input if connected to global clock buffers Otherwise, same as I/O
Global Buffer Input:
Direct input to a low-skew global clock buffer. If not connected to a global clock buffer, this pin is a user I/O.
VREF: I/O bank input reference voltage pins IO_Lxxy_#/VREF_# or IO/VREF_# Voltage supply input when VREF pins are used within a bank. Otherwise, same as I/O
Input Buffer Reference Voltage for Special I/O Standards (per bank):
If required to support special I/O standards, all the VREF pins within a bank connect to a input threshold voltage source. If not used as input reference voltage pins, these pins are available as individual user-I/O pins.
CONFIG: Dedicated configuration pins CCLK Input in Slave configuration modes Output in Master configuration modes PROG_B Input
Program/Configure Device: Configuration Clock:
The configuration clock signal synchronizes configuration data.
Active Low asynchronous reset to configuration logic. Asserting PROG_B Low for an extended period delays the configuration process. This pin has an internal weak pull-up resistor during configuration.
4
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 2: Spartan-3 Pin Definitions (Continued) Pin Name DONE Direction Bidirectional with open-drain or totem-pole Output Description
Configuration Done, Delay Start-up Sequence:
A Low-to-High output transition on this bidirectional pin signals the end of the configuration process. The FPGA produces a Low-to-High transition on this pin to indicate that the configuration process is complete. The DriveDone bitstream generation option defines whether this pin functions as a totem-pole output that actively drives High or as an open-drain output. An open-drain output requires a pull-up resistor to produce a High logic level. The open-drain option permits the DONE lines of multiple FPGAs to be tied together, so that the common node transitions High only after all of the FPGAs have completed configuration. Externally holding the open-drain output Low delays the start-up sequence, which marks the transition to user mode.
M0, M1, M2
Input
Configuration Mode Selection:
These inputs select the configuration mode. The logic levels applied to the mode pins are sampled on the rising edge of INIT_B. See Table 7. HSWAP_EN Input
Disable Weak Pull-up Resistors During Configuration:
A Low on this pin enables weak pull-up resistors on all pins that are not actively involved in the configuration process. A High value disables all pull-ups, allowing the non-configuration pins to float. JTAG: JTAG interface pins TCK TDI Input Input
JTAG Test Clock:
The TCK clock signal synchronizes all JTAG port operations.
JTAG Test Data Input:
TDI is the serial data input for all JTAG instruction and data registers. TMS TDO Input Output
JTAG Test Mode Select:
The serial TMS input controls the operation of the JTAG port.
JTAG Test Data Output:
TDO is the serial data output for all JTAG instruction and data registers. VCCO: I/O bank output voltage supply pins VCCO_# Supply
Power Supply for Output Buffer Drivers (per bank):
These pins power the output drivers within a specific I/O bank. VCCAUX: Auxiliary voltage supply pins VCCAUX Supply
Power Supply for Auxiliary Circuits:
+2.5V power pins for auxiliary circuits, including the Digital Clock Managers (DCMs), the dedicated configuration pins (CONFIG), and the dedicated JTAG pins. All VCCAUX pins must be connected. VCCINT: Internal core voltage supply pins VCCINT Supply
Power Supply for Internal Core Logic:
+1.2V power pins for the internal logic. All pins must be connected.
DS099-4 (v1.6) January 17, 2005 Product Specification www.xilinx.com 5
Spartan-3 FPGA Family: Pinout Descriptions Table 2: Spartan-3 Pin Definitions (Continued) Pin Name GND: Ground supply pins GND Supply
Ground:
R
Direction
Description
Ground pins, which are connected to the power supply's return path. All pins must be connected. N.C.: Unconnected package pins N.C.
Unconnected Package Pin:
These package pins are unconnected.
Notes: 1. All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to externally connect the pin to either VCCO or GND. 2. All outputs are of the totem-pole type -- i.e., they can drive High as well as Low logic levels -- except for the cases where "Open Drain" is indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.
Detailed, Functional Pin Descriptions
I/O Type: Unrestricted, General-purpose I/O Pins
After configuration, I/O-type pins are inputs, outputs, bidirectional I/O, three-state outputs, open-drain outputs, or open-source outputs, as defined in the application Pins labeled "IO" support all SelectIOTM signal standards except differential standards. A given device at most only has a few of these pins. A majority of the general-purpose I/O pins are labeled in the format "IO_Lxxy_#". These pins support all SelectIO signal standards, including the differential standards such as LVDS, ULVDS, BLVDS, RSDS, or LDT. For additional information, see the "IOBs" section in Module 2: Functional Description.
* * * *
`L' indicates differential capability. "xx" is a two-digit integer, unique for each bank, that identifies a differential pin-pair. `y' is replaced by `P' for the true signal or `N' for the inverted. These two pins form one differential pin-pair. `#' is an integer, 0 through 7, indicating the associated I/O bank.
If unused, these pins are in a high impedance state. The Bitstream generator option UnusedPin enables a weak pull-up or pull-down resistor on all unused I/O pins.
Behavior from Power-On through End of Configuration
During the configuration process, all pins that are not actively involved in the configuration process are in a high-impedance state. The HSWAP_EN input determines whether or not weak pull-up resistors are enabled during configuration. HSWAP_EN = 0 enables the weak pull-up resistors. HSWAP_EN = 1 disables the pull-up resistors allowing the pins to float, which is the desired state for hot-swap applications.
Differential Pair Labeling
A pin supports differential standards if the pin is labeled in the format "Lxxy_#". The pin name suffix has the following significance. Figure 1 provides a specific example showing a differential input to and a differential output from Bank 2.
Pair Number
Bank 0
Bank 7
Bank 1
B ank 3 Bank 2
IO_L38P_2 IO_L38N_2 IO_L39P_2 IO_L39N_2
Bank Number
Positive Polarity, True Driver
B ank 6
Bank 5
Bank 4
Figure 1: Differential Pair Labelling
Negative Polarity, Inverted Driver
DS099-4_01_042303
6
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
DUAL Type: Dual-Purpose Configuration and I/O Pins
These pins serve dual purposes. The user-I/O pins are temporarily borrowed during the configuration process to load configuration data into the FPGA. After configuration, these pins are then usually available as a user I/O in the application. If a pin is not applicable to the specific configuration mode--controlled by the mode select pins M2, M1, and M0--then the pin behaves as an I/O-type pin. There are 12 dual-purpose configuration pins on every package, six of which are part of I/O Bank 4, the other six part of I/O Bank 5. Only a few of the pins in Bank 4 are used in the Serial configuration modes. See "Configuration" in Module 2: Functional Description. See "Pin Behavior During Configuration, page 15".
Serial Configuration Modes
This section describes the dual-purpose pins used during either Master or Slave Serial mode. See Table 7 for Mode Select pin settings required for Serial modes. All such pins are in Bank 4 and powered by VCCO_4. In both the Master and Slave Serial modes, DIN is the serial configuration data input. The D1-D7 inputs are unused in serial mode and behave like general-purpose I/O pins. In all the cases, the configuration data is synchronized to the rising edge of the CCLK clock signal. The DIN, DOUT, and INIT_B pins can be retained in the application to support reconfiguration by setting the Persist bitstream generation option. However, the serial modes do not support device readback.
Table 3: Dual-Purpose Pins Used in Master or Slave Serial Mode Pin Name DIN Direction Input
Serial Data Input:
Description During the Master or Slave Serial configuration modes, DIN is the serial configuration data input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is available as a user I/O. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option Persist permits this pin to retain its configuration function in the User mode.
DOUT
Output
Serial Data Output:
In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of one FPGA--in either Master or Slave Serial mode--to the DIN input of the next FPGA--in Slave Serial mode--so that configuration data passes from one to the next, in daisy-chain fashion. This "daisy chain" permits sequential configuration of multiple FPGAs. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option Persist permits this pin to retain its configuration function in the User mode. INIT_B Bidirectional (open-drain)
Initializing Configuration Memory/Configuration Error:
Just after power is applied, the FPGA produces a Low-to-High transition on this pin indicating that initialization (i.e., clearing) of the configuration memory has finished. Before entering the User mode, this pin functions as an open-drain output, which requires a pull-up resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the INIT_B pins from all FPGAs together so that the common node transitions High only after all of the FPGAs have been successfully initialized. Externally holding this pin Low beyond the initialization phase delays the start of configuration. This action stalls the FPGA at the configuration step just before the mode select pins are sampled. During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by asserting INIT_B Low. This signal is located in Bank 4 and its output voltage determined by VCCO_4. The BitGen option Persist permits this pin to retain its configuration function in the User mode.
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
7
Spartan-3 FPGA Family: Pinout Descriptions
R
I/O Bank 4 (VCCO_4) High Nibble
Configuration Data Byte D0 D1 D2 D3 D4
I/O Bank 5 (VCCO_5) Low Nibble
D5 D6 D7
0xA5 =
1
0
1
0
0
1
0
1
Figure 2: Configuration Data Byte Mapping to D0-D7 Bits
Parallel Configuration Modes (SelectMAP)
This section describes the dual-purpose configuration pins used during the Master and Slave Parallel configuration modes, sometimes also called the SelectMAP modes. In both Master and Slave Parallel configuration modes, D0-D7 form the byte-wide configuration data input. See Table 7 for Mode Select pin settings required for Parallel modes. As shown in Figure 2, D0 is the most-significant bit while D7 is the least-significant bit. Bits D0-D3 form the high nibble of the byte and bits D4-D7 form the low nibble. In the Parallel configuration modes, both the VCCO_4 and VCCO_5 voltage supplies are required and must both equal the voltage of the attached configuration device, typically either 2.5V or 3.3V. Assert Low both the chip-select pin, CS_B, and the read/write control pin, RDWR_B, to write the configuration data byte presented on the D0-D7 pins to the FPGA on a rising-edge of the configuration clock, CCLK. The order of
CS_B and RDWR_B does not matter, although RDWR_B must be asserted throughout the configuration process. If RDWR_B is de-asserted during configuration, the FPGA aborts the configuration operation. After configuration, these pins are available as general-purpose user I/O. However, the SelectMAP configuration interface is optionally available for debugging and dynamic reconfiguration. To use these SelectMAP pins after configuration, set the Persist bitstream generation option. The Readback debugging option, for example, requires the Persist bitstream generation option. During Readback mode, assert CS_B Low, along with RDWR_B High, to read a configuration data byte from the FPGA to the D0-D7 bus on a rising CCLK edge. During Readback mode, D0-D7 are output pins. In all the cases, the configuration data and control signals are synchronized to the rising edge of the CCLK clock signal.
8
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes Pin Name D0, D1, D2, D3 Direction Input during configuration Output during readback
Configuration Data Port (high nibble):
Description Collectively, the D0-D7 pins are the byte-wide configuration data port for the Parallel (SelectMAP) configuration modes. Configuration data is synchronized to the rising edge of CCLK clock signal. The D0-D3 pins are the high nibble of the configuration data byte and located in Bank 4 and powered by VCCO_4. The BitGen option Persist permits this pin to retain its configuration function in the User mode.
Configuration Data Port (low nibble):
D4, D5, D6, D7
Input during configuration Output during readback Input
The D4-D7 pins are the low nibble of the configuration data byte. However, these signals are located in Bank 5 and powered by VCCO_5. The BitGen option Persist permits this pin to retain its configuration function in the User mode.
Chip Select for Parallel Mode Configuration:
CS_B
Assert this pin Low, together with RDWR_B to write a configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge. During Readback, assert this pin Low, along with RDWR_B High, to read a configuration data byte from the FPGA to the D0-D7 bus on a rising CCLK edge. This signal is located in Bank 5 and powered by VCCO_5. The BitGen option Persist permits this pin to retain its configuration function in the User mode.
CS_B 0 1 Function FPGA selected. SelectMAP inputs are valid on the next rising edge of CCLK. FPGA deselected. All SelectMAP inputs are ignored.
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
9
Spartan-3 FPGA Family: Pinout Descriptions Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes (Continued) Pin Name RDWR_B Direction Input Description
Read/Write Control for Parallel Mode Configuration:
R
In Master and Slave Parallel modes, assert this pin Low together with CS_B to write a configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge. Once asserted during configuration, RDWR_B must remain asserted until configuration is complete. During Readback, assert this pin High with CS_B Low to read a configuration data byte from the FPGA to the D0-D7 bus on a rising CCLK edge. This signal is located in Bank 5 and powered by VCCO_5. The BitGen option Persist permits this pin to retain its configuration function in the User mode.
RDWR_B 0 1 Function If CS_B is Low, then load (write) configuration data to the FPGA. This option is valid only if the Persist bitstream option is set to Yes. If CS_B is Low, then read configuration data from the FPGA.
BUSY
Output
Configuration Data Rate Control for Parallel Mode:
In the Slave and Master Parallel modes, BUSY throttles the rate at which configuration data is loaded. BUSY is only necessary if CCLK operates at greater than 50 MHz. Ignore BUSY for frequencies of 50 MHz and below. When BUSY is Low, the FPGA accepts the next configuration data byte on the next rising CCLK edge for which CS_B and RDWR_B are Low. When BUSY is High, the FPGA ignores the next configuration data byte. The next configuration data value must be held or reloaded until the next rising CCLK edge when BUSY is Low. When CS_B is High, BUSY is in a high impedance state.
BUSY 0 1 Hi-Z Function The FPGA is ready to accept the next configuration data byte. The FPGA is busy processing the current configuration data byte and is not ready to accept the next byte. If CS_B is High, then BUSY is high impedance.
This signal is located in Bank 4 and its output voltage is determined by VCCO_4. The BitGen option Persist permits this pin to retain its configuration function in the User mode. INIT_B Bidirectional (open-drain)
Initializing Configuration Memory/Configuration Error (active-Low):
See description under Serial Configuration Modes, page 7. LVCMOS25 I/O standard. If connected to +3.3V, then the pins drive LVCMOS output levels and accept either LVTTL or LVCMOS input levels.
JTAG Configuration Mode
In the JTAG configuration mode all dual-purpose configuration pins are unused and behave exactly like user-I/O pins, as shown in Table 10. See Table 7 for Mode Select pin settings required for JTAG mode.
Dual-Purpose Pin Behavior After Configuration
After the configuration process completes, these pins, if they were borrowed during configuration, become user-I/O pins available to the application. If a dual-purpose configuration pin is not used during the configuration process--i.e., the parallel configuration pins when using serial mode--then the pin behaves exactly like a general-purpose I/O. See I/O Type: Unrestricted, General-purpose I/O Pins section above.
Dual-Purpose Pin I/O Standard During Configuration
During configuration, the dual-purpose pins default to CMOS input and output levels for the associated VCCO voltage supply pins. For example, in the Parallel configuration modes, both VCCO_4 and VCCO_5 are required. If connected to +2.5V, then the associated pins conform to the
10
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions SSTL2_I_DCI, SSTL2_II_DCI, or LVDS_25_DCI and LVDSEXT_25_DCI receivers--then both the VRP_# and VRN_# pins connect to separate 1% precision impedance-matching resistors, as shown in Figure 3c. Neither pin is available for user I/O.
DCI: User I/O or Digitally Controlled Impedance Resistor Reference Input
These pins are individual user-I/O pins unless one of the I/O standards used in the bank requires the Digitally Controlled Impedance (DCI) feature. If DCI is used, then 1% precision resistors connected to the VRP_# and VRN_# pins match the impedance on the input or output buffers of the I/O standards that use DCI within the bank. The `#' character in the pin name indicates the associated I/O bank and is an integer, 0 through 7. There are two DCI pins per I/O bank, except in the TQ144 package, which does not have any DCI inputs for Bank 5.
GCLK: Global Clock Buffer Inputs or General-Purpose I/O Pins
These pins are user-I/O pins unless they specifically connect to one of the eight low-skew global clock buffers on the device, specified using the IBUFG primitive. There are eight GCLK pins per device and two each appear in the top-edge banks, Bank 0 and 1, and the bottom-edge banks, Banks 4 and 5. See Figure 1 for a picture of bank labeling. During configuration, these pins behave exactly like user-I/O pins.
VRP and VRN Impedance Resistor Reference Inputs
The 1% precision impedance-matching resistor attached to the VRP_# pin controls the pull-up impedance of PMOS transistor in the input or output buffer. Consequently, the VRP_# pin must connect to ground. The `P' character in "VRP" indicates that this pin controls the I/O buffer's PMOS transistor impedance. The VRP_# pin is used for both single and split termination. The 1% precision impedance-matching resistor attached to the VRN_# pin controls the pull-down impedance of NMOS transistor in the input or output buffer. Consequently, the VRN_# pin must connect to VCCO. The `N' character in "VRN" indicates that this pin controls the I/O buffer's NMOS transistor impedance. The VRN_# pin is only used for split termination. Each VRN or VRP reference input requires its own resistor. A single resistor cannot be shared between VRN or VRP pins associated with different banks. During configuration, these pins behave exactly like user-I/O pins. The associated DCI behavior is not active or valid until after configuration completes. See "Digitally Controlled Impedance (DCI)" in Module 2: Functional Description.
CONFIG: Dedicated Configuration Pins
The dedicated configuration pins control the configuration process and are not available as user-I/O pins. Every package has seven dedicated configuration pins. All CONFIG-type pins are powered by the +2.5V VCCAUX supply. See "Configuration" in Module 2: Functional Description.
CCLK: Configuration Clock
The configuration clock signal on this pin synchronizes the reading or writing of configuration data. This pin is an input for the Slave configuration modes, both parallel and serial. After configuration, the CCLK pin is in a high-impedance, floating state. By default, CCLK optionally is pulled High to VCCAUX as defined by the CclkPin bitstream selection. Any clocks applied to CCLK after configuration are ignored unless the bitstream option Persist is set to Yes, which retains the configuration interface. Persist is set to No by default. However, if Persist is set to Yes, then all clock edges are potentially active events, depending on the other configuration control signals. The bitstream generator option ConfigRate determines the frequency of the internally-generated CCLK oscillator required for the Master configuration modes. The actual frequency is approximate due to the characteristics of the silicon oscillator and varies by up to 30% over the temperature and voltage range. By default, CCLK operates at approximately 6 MHz. Via the ConfigRate option, the oscillator frequency is set at approximately 3, 6, 12, 25, or 50 MHz. At power-on, CCLK always starts operation at its lowest frequency. The device does not start operating at the higher frequency until the ConfigRate control bits are loaded during the configuration process.
DCI Termination Types
If the I/O in an I/O bank do not use the DCI feature, then no external resistors are required and both the VRP_# and VRN_# pins are available for user I/O, as shown in Figure 3a. If the I/O standards within the associated I/O bank require single termination--such as GTL_DCI, GTLP_DCI, or HSTL_III_DCI--then only the VRP_# signal connects to a 1% precision impedance-matching resistor, as shown in Figure 3b. A resistor is not required for the VRN_# pin. Finally, if the I/O standards with the associated I/O bank require split termination--such as HSTL_I_DCI,
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
11
Spartan-3 FPGA Family: Pinout Descriptions
R
One of eight I/O Banks
One of eight I/O Banks
One of eight I/O Banks
VCCO RREF (1%)
User I/O User I/O
VRN VRP RREF (1%)
VRN VRP RREF (1%)
(a) No termination
(b) Single termination
(c) Split termination
DS099-4_03_071304
Figure 3: DCI Termination Types
PROG_B: Program/Configure Device
This asynchronous pin initiates the configuration or re-configuration processes. A Low-going pulse resets the configuration logic, initializing the configuration memory. This initialization process cannot finish until PROG_B returns High. Asserting PROG_B Low for an extended period delays the configuration process. At power-up, there is always a weak pull-up resistor to VCCAUX on this pin. After configuration, the bitstream generator option ProgPin determines whether or not the weak pull-up resistor is present. By default, the ProgPin option retains the weak pull-up resistor. After configuration, hold the PROG_B input High. Any Low-going pulse on PROG_B restarts the configuration process. Table 5: PROG_B Operation PROG_B Input
Power-up Low-going pulse
DONE: Configuration Done, Delay Start-Up Sequence
The FPGA produces a Low-to-High transition on this pin indicating that the configuration process is complete. The bitstream generator option DriveDone determines whether this pin functions as a totem-pole output that can drive High or as an open-drain output. If configured as an open-drain output--which is the default behavior--then a pull-up resistor is required to produce a High logic level. There is a bitstream option that provides an internal weak pull-up resistor, otherwise an external pull-up resistor is required. The open-drain option permits the DONE lines of multiple FPGAs to be tied together, so that the common node transitions High only after all of the FPGAs have completed configuration. Externally holding the open-drain DONE pin Low delays the start-up sequence, which marks the transition to user mode. Once the FPGA enters User mode after completing configuration, the DONE pin no longer drives the DONE pin Low. The bitstream generator option DonePin determines whether or not a weak pull-up resistor is present on the DONE pin to pull the pin to VCCAUX. If the weak pull-up resistor is eliminated, then the DONE pin must be pulled High using an external pull-up resistor or one of the FPGAs in the design must actively drive the DONE pin High via the DriveDone bitstream generator option. The bitstream generator option DriveDone causes the FPGA to actively drive the DONE output High after configuration. This option should only be used in single-FPGA designs or on the last FPGA in a multi-FPGA daisy-chain. By default, the bitstream generator software retains the weak pull-up resistor and does not actively drive the DONE pin as highlighted in Table 6. Table 6 shows the interaction of these bitstream options in single- and multi-FPGA designs.
Response Automatically initiates configuration process. Initiate (re-)configuration process and continue to completion. Initiate (re-)configuration process and stall process at step where configuration memory is cleared. Process is stalled until PROG_B returns High. If the configuration process is started, continue to completion. If configuration process is complete, stay in User mode.
Extended Low
1
12
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 6: DonePin and DriveDone Bitstream Option Interaction DonePin Pullnone Pullnone Pullnone Pullnone Pullup Pullup Pullup Pullup DriveDone No No Yes Yes No No Yes Yes Single- or MultiFPGA Design Single Multi Single Multi Single Multi Single Multi Comments External pull-up resistor, with value between 330 to 3.3k required on , DONE. External pull-up resistor, with value between 330 to 3.3k required on , common node connecting to all DONE pins. OK, no external requirements. DriveDone on last device in daisy-chain only. No external requirements. OK, but weak pull-up on DONE pin has slow rise time. May require 330 pull-up resistor for high CCLK frequencies. External pull-up resistor, with value between 330 to 3.3k required on , common node connecting to all DONE pins. OK, no external requirements. DriveDone on last device in daisy-chain only. No external requirements. completes. A High disables the weak pull-up resistors (during configuration, which is the desired state for some applications. Table 8: HSWAP_EN Encoding Table 7: Spartan-3 Configuration Mode Select Settings Configuration Mode Master Serial Slave Serial Master Parallel Slave Parallel JTAG Reserved Reserved Reserved After Configuration
Notes: 1. X = don't care, either 0 or 1.
M2, M1, M0: Configuration Mode Selection
These inputs select the mode to configure the FPGA. The logic levels applied to the mode pins are sampled on the rising edge of INIT_B.
HSWAP_EN
During Configuration
Function
M2 0 1 0 1 1 0 0 1 X
M1 0 1 1 1 0 0 1 0 X
M0 0 1 1 0 1 1 0 0 X
0
Enable weak pull-up resistors on all pins not actively involved in the configuration process. Pull-ups are only active until configuration completes. See Table 10. No pull-up resistors during configuration.
1
After Configuration, User Mode
X
This pin has no function except during device configuration.
Notes: 1. X = don't care, either 0 or 1.
In user mode, after configuration successfully completes, any levels applied to these input are ignored. Each of the bitstream generator options M0Pin, M1Pin, and M2Pin determines whether a weak pull-up resistor, weak pull-down resistor, or no resistor is present on its respective mode pin, M0, M1, or M2.
After configuration, HSWAP_EN essentially becomes a "don't care" input and any pull-up resistors previously enabled by HSWAP_EN are disabled. If a user I/O in the application requires a weak pull-up resistor after configuration, place a PULLUP primitive on the associated I/O pin. The Bitstream generator option HswapenPin determines whether a weak pull-up resistor to VCCAUX, a weak pull-down resistor, or no resistor is present on HSWAP_EN after configuration.
HSWAP_EN: Disable Weak Pull-up Resistors During Configuration
A Low on this asynchronous pin enables weak pull-up resistors on all user I/Os, although only until device configuration
DS099-4 (v1.6) January 17, 2005 Product Specification
JTAG: Dedicated JTAG Port Pins
These pins are dedicated connections to the four-wire IEEE 1532/IEEE 1149.1 JTAG port, shown in Figure 4 and
www.xilinx.com
13
Spartan-3 FPGA Family: Pinout Descriptions described in Table 9. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and possibly an additional serial port for the application. These pins are dedicated and are not available as user-I/O pins. Every package has four dedicated JTAG pins and these pins are powered by the +2.5V VCCAUX supply.
R
resistor. Similarly, the TDO pin is a CMOS output powered from +2.5V. The TDO output can directly drive a 3.3V input but with reduced noise immunity. See the 3.3V-Tolerant Configuration Interface section in Module 2: Functional Description for additional details. The following interface precautions are recommended when connecting the JTAG port to a 3.3V interface. 1. Set any inactive JTAG signals, including TCK, Low when not actively used.
JTAG Port TDI TMS TCK Data In Mode Select Clock
DS099-4_04_042103
Data Out
TDO
2. Limit the drive current into a JTAG input to no more than 10 mA.
VREF: User I/O or Input Buffer Reference Voltage for Special Interface Standards
These pins are individual user-I/O pins unless collectively they supply an input reference voltage, VREF_#, for any SSTL, HSTL, GTL, or GTLP I/Os implemented in the associated I/O bank. The `#' character in the pin name represents an integer, 0 through 7, that indicates the associated I/O bank. The VREF function becomes active for this pin whenever a signal standard requiring a reference voltage is used in the associated bank. If used as a user I/O, then each pin behaves as an independent I/O described in the I/O type section. If used for a reference voltage within a bank, then all VREF pins within the bank must be connected to the same reference voltage. Spartan-3 devices are designed and characterized to support certain I/O standards when VREF is connected to +1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V. During configuration, these pins behave exactly like user-I/O pins.
Figure 4: JTAG Port
Using JTAG Port After Configuration
The JTAG port is always active and available before, during, and after FPGA configuration. Add the BSCAN_SPARTAN3 primitive to the design to create user-defined JTAG instructions and JTAG chains to communicate with internal logic. Furthermore, the contents of the User ID register within the JTAG port can be specified as a Bitstream Generation option. By default, the 32-bit User ID register contains 0xFFFFFFFF.
Precautions When Using the JTAG Port in 3.3V Environments
The JTAG port is powered by the +2.5V VCCAUX power supply. When connecting to a 3.3V interface, the JTAG input pins must be current-limited to 10 mA or less using a series Table 9: JTAG Pin Descriptions Pin Name TCK Direction Input Description
Bitstream Generation Option The BitGen option TckPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present. The BitGen option TdiPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present. The BitGen option TmsPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present. The BitGen option TdoPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present.
Test Clock: The TCK clock signal synchronizes all boundary scan operations on its rising edge.
TDI
Input
Test Data Input: TDI is the serial data input for all JTAG instruction and data registers. This input is sampled on the rising edge of TCK. Test Mode Select: The TMS input controls the sequence of states through which the JTAG TAP state machine passes. This input is sampled on the rising edge of TCK. Test Data Output: The TDO pin is the data output for all JTAG instruction and data registers. This output is sampled on the rising edge of TCK. The TDO output is an active totem-pole driver and is not like the open-collector TDO output on Virtex-II ProTM FPGAs.
www.xilinx.com
TMS
Input
TDO
Output
14
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions from the VCCINT voltage supply inputs. VCCINT must be +1.2V. All VCCINT inputs must be connected together and to the +1.2V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.
If designing for footprint compatibility across the range of devices in a specific package, and if the VREF_# pins within a bank connect to an input reference voltage, then also connect any N.C. (not connected) pins on the smaller devices in that package to the input reference voltage. More details are provided later for each package type.
N.C. Type: Unconnected Package Pins
Pins marked as "N.C." are unconnected for the specific device/package combination. For other devices in this same package, this pin may be used as an I/O or VREF connection. In both the pinout tables and the footprint diagrams, unconnected pins are noted with either a black diamond symbol ( ) or a black square symbol ( ). If designing for footprint compatibility across multiple device densities, check the pin types of the other Spartan-3 devices available in the same footprint. If the N.C. pin matches to VREF pins in other devices, and the VREF pins are used in the associated I/O bank, then connect the N.C. to the VREF voltage source.
VCCAUX Type: Voltage Supply for Auxiliary Logic
The VCCAUX pins supply power to various auxiliary circuits, such as to the Digital Clock Managers (DCMs), the JTAG pins, and to the dedicated configuration pins (CONFIG type). VCCAUX must be +2.5V. All VCCAUX inputs must be connected together and to the +2.5V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.
VCCO Type: Output Voltage Supply for I/O Bank
Each I/O bank has its own set of voltage supply pins that determines the output voltage for the output buffers in the I/O bank. Furthermore, for some I/O standards such as LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input threshold voltage on the associated input buffers. Spartan-3 devices are designed and characterized to support various I/O standards for VCCO values of +1.2V, +1.5V, +1.8V, +2.5V, and +3.3V. Most VCCO pins are labeled as VCCO_# where the `#' symbol represents the associated I/O bank number, an integer ranging from 0 to 7. In the 144-pin TQFP package (TQ144) however, the VCCO pins along an edge of the device are combined into a single VCCO input. For example, the VCCO inputs for Bank 0 and Bank 1 along the top edge of the package are combined and relabeled VCCO_TOP. The bottom, left, and right edges are similarly combined. In Serial configuration mode, VCCO_4 must be at a level compatible with the attached configuration memory or data source. In Parallel configuration mode, both VCCO_4 and VCCO_5 must be at the same compatible voltage level. All VCCO inputs to a bank must be connected together and to the voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS)
Design: Using Bypass/Decoupling Capacitors.
Because VCCAUX connects to the DCMs and the DCMs are sensitive to voltage changes, be sure that the VCCAUX supply and the ground return paths are designed for low noise and low voltage drop, especially that caused by a large number of simultaneous switching I/Os.
GND Type: Ground
All GND pins must be connected and have a low resistance path back to the various VCCO, VCCINT, and VCCAUX supplies.
Pin Behavior During Configuration
Table 10 shows how various pins behave during the FPGA configuration process. The actual behavior depends on the values applied to the M2, M1, and M0 mode select pins and the HSWAP_EN pin. The mode select pins determine which of the DUAL type pins are active during configuration. In JTAG configuration mode, none of the DUAL-type pins are used for configuration and all behave as user-I/O pins. All DUAL-type pins not actively used during configuration and all I/O-type, DCI-type, VREF-type, GCLK-type pins are high impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 10 as shaded table entries or cells. These pins have a weak pull-up resistor to their associated VCCO if the HSWAP_EN pin is Low. After configuration completes, some pins have optional behavior controlled by the configuration bitstream loaded into the part. For example, via the bitstream, all unused I/O pins can collectively be configured to have a weak pull-up resistor, a weak pull-down resistor, or be left in a high-impedance state.
VCCINT Type: Voltage Supply for Internal Core Logic
Internal core logic circuits such as the configurable logic blocks (CLBs) and programmable interconnect operate
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
15
Spartan-3 FPGA Family: Pinout Descriptions
R
Table 10: Pin Behavior After Power-Up, During Configuration Configuration Mode Settings Serial Modes Pin Name Master <0:0:0> Slave <1:1:1> SelectMap Parallel Modes Master <0:1:1> Slave <1:1:0> JTAG Mode <1:0:1> Bitstream Configuration Option
I/O: General-purpose I/O pins IO IO_Lxxy_# DUAL: Dual-purpose configuration pins IO_Lxxy_#/ DIN/D0 IO_Lxxy_#/ D1 IO_Lxxy_#/ D2 IO_Lxxy_#/ D3 IO_Lxxy_#/ D4 IO_Lxxy_#/ D5 IO_Lxxy_#/ D6 IO_Lxxy_#/ D7 IO_Lxxy_#/ CS_B IO_Lxxy_#/ RDWR_B IO_Lxxy_#/ BUSY/DOUT IO_Lxxy_#/ INIT_B DOUT (O) INIT_B (I/OD) DOUT (O) INIT_B (I/OD) DIN (I) DIN (I) D0 (I/O) D1 (I/O) D2 (I/O) D3 (I/O) D4 (I/O) D5 (I/O) D6 (I/O) D7 (I/O) CS_B (I) RDWR_B (I) BUSY (O) INIT_B (I/OD) D0 (I/O) D1 (I/O) D2 (I/O) D3 (I/O) D4 (I/O) D5 (I/O) D6 (I/O) D7 (I/O) CS_B (I) RDWR_B (I) BUSY (O) INIT_B (I/OD) Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin Persist UnusedPin UnusedPin UnusedPin UnusedPin
DCI: Digitally Controlled Impedance reference resistor input pins IO_Lxxy_#/ VRN_# IO/VRN_# IO_Lxxy_#/ VRP_# IO/VRP_# UnusedPin UnusedPin UnusedPin UnusedPin
16
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 10: Pin Behavior After Power-Up, During Configuration (Continued) Configuration Mode Settings Serial Modes Pin Name Master <0:0:0> Slave <1:1:1> SelectMap Parallel Modes Master <0:1:1> Slave <1:1:0> JTAG Mode <1:0:1> Bitstream Configuration Option
GCLK: Global clock buffer inputs IO_Lxxy_#/ GCLK0 through GCLK7 VREF: I/O bank input reference voltage pins IO_Lxxy_#/ VREF_# IO/VREF_# CONFIG: Dedicated configuration pins CCLK PROG_B CCLK (O) PROG_B (I) (pull-up) DONE (I/OD) CCLK (I) PROG_B (I) (pull-up) DONE (I/OD) CCLK (O) PROG_B (I) (pull-up) DONE (I/OD) CCLK (I) PROG_B (I) (pull-up) DONE (I/OD) PROG_B (I), Via JPROG_B instruction DONE (I/OD) CclkPin ConfigRate ProgPin UnusedPin UnusedPin UnusedPin
DONE
DriveDone DonePin DonePipe M2Pin M1Pin M0Pin HswapenPin
M2 M1 M0 HSWAP_EN
M2=0 (I) M1=0 (I) M0=0 (I) HSWAP_EN (I)
M2=1 (I) M1=1 (I) M0=1 (I) HSWAP_EN (I)
M2=0 (I) M1=1 (I) M0=1 (I) HSWAP_EN (I)
M2=1 (I) M1=1 (I) M0=0 (I) HSWAP_EN (I)
M2=1 (I) M1=0 (I) M0=1 (I) HSWAP_EN (I)
JTAG: JTAG interface pins TDI TMS TCK TDO TDI (I) TMS (I) TCK (I) TDO (O) TDI (I) TMS (I) TCK (I) TDO (O) TDI (I) TMS (I) TCK (I) TDO (O) TDI (I) TMS (I) TCK (I) TDO (O) TDI (I) TMS (I) TCK (I) TDO (O) TdiPin TmsPin TckPin TdoPin
VCCO: I/O bank output voltage supply pins VCCO_4 (for DUAL pins) VCCO_5 (for DUAL pins) VCCO_# Same voltage as external interface VCCO_5 Same voltage as external interface VCCO_5 Same voltage as external interface Same voltage as external interface VCCO_# Same voltage as external interface Same voltage as external interface VCCO_# VCCO_4
VCCO_5
VCCO_#
VCCO_#
VCCO_#
VCCAUX: Auxiliary voltage supply pins VCCAUX +2.5V +2.5V +2.5V +2.5V +2.5V
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
17
Spartan-3 FPGA Family: Pinout Descriptions Table 10: Pin Behavior After Power-Up, During Configuration (Continued) Configuration Mode Settings Serial Modes Pin Name Master <0:0:0> Slave <1:1:1> SelectMap Parallel Modes Master <0:1:1> Slave <1:1:0> JTAG Mode <1:0:1> Bitstream Configuration Option
R
VCCINT: Internal core voltage supply pins VCCINT +1.2V +1.2V +1.2V +1.2V +1.2V
GND: Ground supply pins GND GND GND GND GND GND
Notes: 1. #= I/O bank number, an integer from 0 to 7. 2. (I) = input, (O) = output, (OD) = open-drain output, (I/O) = bidirectional, (I/OD) = bidirectional with open-drain output. Open-drain output requires pull-up to create logic High level. 3. Shaded cell indicates that the pin is high-impedance during configuration. To enable a soft pull-up resistor during configuration, drive or tie HSWAP_EN Low.
Bitstream Options
Table 11 lists the various bitstream options that affect pins on a Spartan-3 FPGA. The table shows the names of the affected pins, describes the function of the bitstream option, Table 11: Bitstream Options Affecting Spartan-3 Pins Affected Pin Name(s) All unused I/O pins of type I/O, DUAL, GCLK, DCI, VREF
the name of the bitstream generator option variable, and the legal values for each variable. The default option setting for each variable is indicated with bold, underlined text.
Bitstream Generation Function For all I/O pins that are unused after configuration, this option defines whether the I/Os are individually tied to VCCO via a weak pull-up resistor, tied ground via a weak pull-down resistor, or left floating. If left floating, the unused pins should be connected to a defined logic level, either from a source internal to the FPGA or external. Serial configuration mode: If set to Yes, then these pins retain their functionality after configuration completes, allowing for device (re-)configuration. Readback is not supported in with serial mode. Parallel configuration mode (also called SelectMAP): If set to Yes, then these pins retain their SelectMAP functionality after configuration completes, allowing for device readback and for partial or complete (re-)configuration.
Option Variable Name UnusedPin * * *
Values (default value) Pulldown Pullup Pullnone
IO_Lxxy_#/DIN, IO_Lxxy_#/DOUT, IO_Lxxy_#/INIT_B IO_Lxxy_#/D0, IO_Lxxy_#/D1, IO_Lxxy_#/D2, IO_Lxxy_#/D3, IO_Lxxy_#/D4, IO_Lxxy_#/D5, IO_Lxxy_#/D6, IO_Lxxy_#/D7, IO_Lxxy_#/CS_B, IO_Lxxy_#/RDWR_B, IO_Lxxy_#/BUSY, IO_Lxxy_#/INIT_B CCLK CCLK
Persist
* * * *
No Yes No Yes
Persist
After configuration, this bitstream option either pulls CCLK to VCCAUX via a weak pull-up resistor, or allows CCLK to float. For Master configuration modes, this option sets the approximate frequency, in MHz, for the internal silicon oscillator.
CclkPin ConfigRate
* *
Pullup Pullnone
3, 6, 12, 25, 50
18
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 11: Bitstream Options Affecting Spartan-3 Pins (Continued) Affected Pin Name(s) PROG_B Option Variable Name ProgPin * * Values (default value) Pullup Pullnone
Bitstream Generation Function A weak pull-up resistor to VCCAUX exists on PROG_B during configuration. After configuration, this bitstream option either pulls DONE to VCCAUX via a weak pull-up resistor, or allows DONE to float. After configuration, this bitstream option either pulls DONE to VCCAUX via a weak pull-up resistor, or allows DONE to float. See also DriveDone option. If set to Yes, this option allows the FPGA's DONE pin to drive High when configuration completes. By default, the DONE is an open-drain output and can only drive Low. Only single FPGAs and the last FPGA in a multi-FPGA daisy-chain should use this option. After configuration, this bitstream option either pulls M2 to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows M2 to float. After configuration, this bitstream option either pulls M1 to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows M1 to float. After configuration, this bitstream option either pulls M0 to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows M0 to float. After configuration, this bitstream option either pulls HSWAP_EN to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows HSWAP_EN to float. After configuration, this bitstream option either pulls TDI to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TDI to float. After configuration, this bitstream option either pulls TMS to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TMS to float. After configuration, this bitstream option either pulls TCK to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TCK to float. After configuration, this bitstream option either pulls TDO to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TDO to float.
DONE
DonePin
* * * *
Pullup Pullnone No Yes
DONE
DriveDone
M2
M1
M0
HSWAP_EN
TDI
TMS
TCK
TDO
* * * * M1Pin * * * M0Pin * * * HswapenPin * * * TdiPin * * * TmsPin * * * TckPin * * * TdoPin * * M2Pin
Pullup Pulldown Pullnone Pullup Pulldown Pullnone Pullup Pulldown Pullnone Pullup Pulldown Pullnone Pullup Pulldown Pullnone Pullup Pulldown Pullnone Pullup Pulldown Pullnone Pullup Pulldown Pullnone
Setting Options via BitGen Command-Line Program
To set one or more bitstream generator options using the BitGen command-line program, enter
bitgen -g : [: ...]
where is one of the entries from Table 11 and is one of the possible values for the specified variable. Multiple bitstream options may be entered in this manner. For a complete listing of all BitGen options, their possible settings, and their default settings, enter the following command.
bitgen -help spartan3
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
19
Spartan-3 FPGA Family: Pinout Descriptions
R
Setting Options in Project Navigator
To set the bitstream generation options in Xilinx ISE Project Navigator, right-click on the Generate Programming File step in the Process View and click Properties, as shown in Figure 5.
Click the Configuration options tab and modify the available options as required by the application, as shown in Figure 6.
DS099-4_05_030103
Figure 5: Setting Properties for Generate Programming File Step
DS099-4_06_030103
Figure 6: Configuration Option Settings
20
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
DS099-4_07_030103
Figure 7: Setting to Drive DONE Pin High after Configuration To have the DONE pin drive High after successful configuration, click the Startup options tab and check the Drive Done Pin High box, as shown in Figure 7. Click OK when finished. Again, right-click on the Generate Programming File step in the Process View. This time, choose Run or Rerun to execute the changes. is available as a standard and an environmentally-friendly lead-free (Pb-free) option. The Pb-free packages include an extra `G' in the package style name. For example, the standard "VQ100" package becomes "VQG100" when ordered as the Pb-free option. The mechanical dimensions of the standard and Pb-free packages are similar, as shown in the mechanical drawings provided in Table 14. Not all Spartan-3 densities are available in all packages. However, for a specific package there is a common footprint for that supports the various devices available in that package. See the footprint diagrams that follow.
Package Overview
Table 12 shows the 10 low-cost, space-saving production package styles for the Spartan-3 family. Each package style Table 12: Spartan-3 Family Package Options Package VQ100 / VQG100 CP132 / CPG132 TQ144 / TQG144 PQ208 / PQG208 FT256 / FTG256 FG320 / FGG320 FG456 / FGG456 FG676 / FGG676 FG900 / FGG900 FG1156 / FGG1156 Leads 100 132 144 208 256 320 456 676 900 1156 Type Very-thin Quad Flat Pack Chip-Scale Package Thin Quad Flat Pack Quad Flat Pack
Maximum I/O 63 89 97 141 173 221 333 489 633 784
Pitch (mm) 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0
Area (mm) 16 x 16 8x8 22 x 22 30.6 x 30.6 17 x 17 19 x 19 23 x 23 27 x 27 31 x 31 35 x 35
Height (mm) 1.20 1.10 1.60 4.10 1.55 2.00 2.60 2.60 2.60 2.60
21
Fine-pitch, Thin Ball Grid Array Fine-pitch Ball Grid Array Fine-pitch Ball Grid Array Fine-pitch Ball Grid Array Fine-pitch Ball Grid Array Fine-pitch Ball Grid Array
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
Spartan-3 FPGA Family: Pinout Descriptions
R
Selecting the Right Package Option
Spartan-3 FPGAs are available in both quad-flat pack (QFP) and ball grid array (BGA) packaging options. While QFP packaging offers the lowest absolute cost, the BGA Table 13: Comparing Spartan-3 Packaging Options Characteristic Maximum User I/O Packing Density (Logic/Area) Signal Integrity Simultaneous Switching Output (SSO) Support Thermal Dissipation Minimum Printed Circuit Board (PCB) Layers Hand Assembly/Rework Quad Flat-Pack (QFP) 141 Good Fair Limited Fair 4 Possible Ball Grid Array (BGA) 784 Better Better Better Better 6 Very Difficult packages are superior in almost every other aspect, as summarized in Table 13. Consequently, Xilinx recommends using BGA packaging whenever possible.
Mechanical Drawings
Detailed mechanical drawings for each package type are available from the Xilinx website at the specified location in Table 14. Table 14: Xilinx Package Mechanical Drawings Package VQ100 / VQG100 CP132/ CPG132 TQ144 / TQG144 PQ208 / PQG208 FT256 / FTG256 FG320 / FGG320 FG456 / FGG456 FG676 / FGG676 FG900 /FGG900 FG1156 / FGG1156 Web Link (URL)
http://www.xilinx.com/bvdocs/packages/vq100.pdf http://www.xilinx.com/bvdocs/packages/cp132.pdf http://www.xilinx.com/bvdocs/packages/tq144.pdf http://www.xilinx.com/bvdocs/packages/pq208.pdf http://www.xilinx.com/bvdocs/packages/ft256.pdf http://www.xilinx.com/bvdocs/packages/fg320.pdf http://www.xilinx.com/bvdocs/packages/fg456.pdf http://www.xilinx.com/bvdocs/packages/fg676.pdf http://www.xilinx.com/bvdocs/packages/fg900.pdf http://www.xilinx.com/bvdocs/packages/fg1156.pdf
22
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Power, Ground, and I/O by Package
Each package has three separate voltage supply inputs--VCCINT, VCCAUX, and VCCO--and a common ground return, GND. The numbers of pins dedicated to these functions varies by package, as shown in Table 15. Table 15: Power and Ground Supply Pins by Package Package VQ100 CP132 TQ144 PQ208 FT256 FG320 FG456 FG676 FG900 FG1156 VCCINT 4 4 4 4 8 12 12 20 32 40 VCCAUX 4 4 4 8 8 8 8 16 24 32 VCCO 8 12 12 12 24 28 40 64 80 104 GND 10 12 16 28 32 40 52 76 120 184 A majority of package pins are user-defined I/O pins. However, the numbers and characteristics of these I/O depends on the device type and the package in which it is available, as shown in Table 16. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as general-purpose I/O. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user I/Os are distributed by pin type, including the number of unconnected--i.e., N.C.--pins on the device.
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
23
Spartan-3 FPGA Family: Pinout Descriptions
R
Table 16: Maximum User I/Os by Package Maximum User I/Os 63 63 89 97 97 97 124 141 141 173 173 173 221 221 221 264 333 333 333 391 487 489 489 565 633 633 712 784 Maximum Differential Pairs 29 29 44 46 46 46 56 62 62 76 76 76 100 100 100 116 149 149 149 175 221 221 221 270 300 300 312 344 All Possible I/O Pins by Type I/O 22 22 44 51 51 51 72 83 83 113 113 113 156 156 156 196 261 261 261 315 403 405 405 481 549 549 621 692 DUAL 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 DCI 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 VREF 7 7 11 12 12 12 16 22 22 24 24 24 29 29 29 32 36 36 36 40 48 48 48 48 48 48 55 56 GCLK 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 N.C. 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 69 0 0 0 98 2 0 0 68 0 0 73 1
Device XC3S50 XC3S200 XC3S50 XC3S50 XC3S200 XC3S400 XC3S50 XC3S200 XC3S400 XC3S200 XC3S400 XC3S1000 XC3S400 XC3S1000 XC3S1500 XC3S400 XC3S1000 XC3S1500 XC3S2000 XC3S1000 XC3S1500 XC3S2000 XC3S4000 XC3S2000 XC3S4000 XC3S5000 XC3S4000 XC3S5000
Package VQ100 VQ100 CP132 TQ144 TQ144 TQ144 PQ208 PQ208 PQ208 FT256 FT256 FT256 FG320 FG320 FG320 FG456 FG456 FG456 FG456 FG676 FG676 FG676 FG676 FG900 FG900 FG900 FG1156 FG1156
Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website. Using a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the
ASCII-text file is easily parsed by most scripting programs. Download the files from the following location:
http://www.xilinx.com/bvdocs/publications/s3_pin.zip
24
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 17: VQ100 Package Pinout
XC3S50 XC3S200 Pin Name IO_L01P_3/VRN_3 IO_L24N_3 IO_L24P_3 IO_L40N_3/VREF_3 IO_L40P_3 VCCO_3 IO_L01N_4/VRP_4 IO_L01P_4/VRN_4 IO_L27N_4/DIN/D0 IO_L27P_4/D1 IO_L30N_4/D2 IO_L30P_4/D3 IO_L31N_4/INIT_B IO_L31P_4/DOUT/BUSY IO_L32N_4/GCLK1 IO_L32P_4/GCLK0 VCCO_4 IO_L01N_5/RDWR_B IO_L01P_5/CS_B IO_L28N_5/D6 IO_L28P_5/D7 IO_L31N_5/D4 IO_L31P_5/D5 IO_L32N_5/GCLK3 IO_L32P_5/GCLK2 VCCO_5 IO IO IO_L01N_6/VRP_6 IO_L01P_6/VRN_6 IO_L24N_6/VREF_6 IO_L24P_6 IO_L40N_6 IO_L40P_6/VREF_6 VCCO_6 IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L21N_7 IO_L21P_7 IO_L23N_7 IO_L23P_7 VQ100 Pin Number P53 P61 P60 P63 P62 P57 P50 P49 P48 P47 P44 P43 P42 P40 P39 P38 P46 P28 P27 P32 P30 P35 P34 P37 P36 P31 P17 P21 P23 P22 P16 P15 P14 P13 P19 P2 P1 P5 P4 P9 P8
VQ100: 100-lead Very-thin Quad Flat Package
The XC3S50 and the XC3S200 devices are available in the 100-lead very-thin quad flat package, VQ100. Both devices share a common footprint for this package as shown in Table 17 and Figure 8. All the package pins appear in Table 17 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Bank 3 3 3 3 3 3 4 4 4 4 4 4 4
Type DCI I/O I/O VREF I/O VCCO DCI DCI DUAL DUAL DUAL DUAL DUAL DUAL GCLK GCLK VCCO DUAL DUAL DUAL DUAL DUAL DUAL GCLK GCLK VCCO I/O I/O DCI DCI VREF I/O I/O VREF VCCO DCI DCI I/O I/O I/O I/O
Pinout Table
Table 17: VQ100 Package Pinout
XC3S50 XC3S200 Pin Name IO_L01N_0/VRP_0 IO_L01P_0/VRN_0 IO_L31N_0 IO_L31P_0/VREF_0 IO_L32N_0/GCLK7 IO_L32P_0/GCLK6 VCCO_0 IO IO_L01N_1/VRP_1 IO_L01P_1/VRN_1 IO_L31N_1/VREF_1 IO_L31P_1 IO_L32N_1/GCLK5 IO_L32P_1/GCLK4 VCCO_1 IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 IO_L21N_2 IO_L21P_2 IO_L24N_2 IO_L24P_2 IO_L40N_2 IO_L40P_2/VREF_2 VCCO_2 IO IO IO_L01N_3/VRP_3 VQ100 Pin Number P97 P96 P92 P91 P90 P89 P94 P81 P80 P79 P86 P85 P88 P87 P83 P75 P74 P72 P71 P68 P67 P65 P64 P70 P55 P59 P54
Bank 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3
Type DCI DCI I/O VREF GCLK GCLK VCCO I/O DCI DCI VREF I/O GCLK GCLK VCCO DCI DCI I/O I/O I/O I/O I/O VREF VCCO I/O I/O DCI
4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
25
Spartan-3 FPGA Family: Pinout Descriptions Table 17: VQ100 Package Pinout
XC3S50 XC3S200 Pin Name IO_L40N_7/VREF_7 IO_L40P_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VQ100 Pin Number P12 P11 P6 P3 P10 P20 P29 P41 P56 P66 P73 P82 P95 P7 P33 P58 P84 P18 P45
R
Table 17: VQ100 Package Pinout
XC3S50 XC3S200 Pin Name VCCINT VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS VQ100 Pin Number P69 P93 P52 P51 P98 P25 P24 P26 P99 P77 P100 P76 P78
Bank 7 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type VREF I/O VCCO GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT
Bank N/A N/A VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
Type VCCINT VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
User I/Os by Bank
Table 18 indicates how the available user-I/O pins are distributed between the eight I/O banks on the VQ100 package.
Table 18: User I/Os Per Bank in VQ100 Package Maximum I/O 6 7 8 8 10 8 8 8 All Possible I/O Pins by Type I/O 1 2 5 5 0 0 4 5 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 0 2 2 VREF 1 1 1 1 0 0 2 1 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
26
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
VQ100 Footprint
IO_L31N_1/VREF_1 IO_L31P_0/VREF_0 IO_L32N_0/GCLK7 IO_L32N_1/GCLK5 IO_L32P_0/GCLK6 IO_L32P_1/GCLK4 IO_L01N_0/VRP_0 IO_L01P_0/VRN_0 IO_L01N_1/VRP_1 IO_L01P_1/VRN_1
HSWAP_EN
IO_L31N_0
IO_L31P_1
PROG_B
VCCAUX
VCCO_0
VCCO_1
VCCINT
GN D
GND
100 TDI
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
IO_L01P_7/VRN_7 IO_L01N_7/VRP_7 GND IO_L21P_7 IO_L21N_7 VCCO_7 VCCAUX IO_L23P_7 IO_L23N_7 GND IO_L40P_7 IO_L40N_7/VREF_7 IO_L40P_6/VREF_6 IO_L40N_6 IO_L24P_6 IO_L24N_6/VREF_6 IO VCCINT VCCO_6 GND IO IO_L01P_6/VRN_6 IO_L01N_6/VRP_6 M1 M0
1 2 3 4 5 6
76 75 74 73 72 71 70
TDO
TMS
TCK
IO
Bank 0
Bank 1
IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 GND IO_L21N_2 IO_L21P_2 VCCO_2 VCCINT IO_L24N_2 IO_L24P_2 GND IO_L40N_2 IO_L40P_2/VREF_2 IO_L40N_3/VREF_3 IO_L40P_3 IO_L24N_3 IO_L24P_3 IO VCCAUX VCCO_3 GND IO IO_L01N_3/VRP_3 IO_L01P_3/VRN_3 CCLK DONE
Bank 7
7 8 9 10 11 12 13 14 15 16
Bank 2 Bank 3 Bank 5
(no VREF, no DCI)
69 68 67 66 65 64 63 62 61 60
17 18 19 20 21 22 23 24 25
Bank 6
59 58 57 56 55 54 53
Bank 4
(no VREF)
36 37 38 39 40 41 42 43 44 45 46 47 48 49 IO_L01P_4/VRN_4 50 IO_L01N_4/VRP_4 34 35
52 51
26
27
28
29
30
31
32
33
IO_L32P_5/GCLK2
IO_L32N_5/GCLK3
IO_L32P_4/GCLK0
IO_L32N_4/GCLK1
IO_L31N_4/INIT_B
IO_L01P_5/CS_B
IO_L28P_5/D7
IO_L28N_5/D6
IO_L31P_5/D5
IO_L31N_5/D4
IO_L30P_4/D3
IO_L30N_4/D2
IO_L31P_4/DOUT/BUSY
IO_L01N_5/RDWR_B
IO_L27P_4/D1
IO_L27N_4/DIN/D0
GND
VCCO_5
GND
M2
VCCAUX
VCCO_4
VCCINT
DS099-4_15_042303
Figure 8: VQ100 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
22 14 7 0 I/O: Unrestricted, general-purpose user I/O DCI: User I/O or reference resistor input for bank CONFIG: Dedicated configuration pins N.C.: No unconnected pins in this package 12 DUAL: Configuration pin, then possible user I/O GCLK: User I/O or global clock buffer input JTAG: Dedicated JTAG port pins GND: Ground 7 8 4 4 VREF: User I/O or input voltage reference for bank VCCO: Output voltage supply for bank VCCINT: Internal core voltage supply (+1.2V) VCCAUX: Auxiliary voltage supply (+2.5V)
8
4 10
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
27
Spartan-3 FPGA Family: Pinout Descriptions
R
CP132: 132-ball Chip-Scale Package
The XC3S50 is available in the 132-ball chip-scale package, CP132. The pinout and footprint for this package appear in Table 19 and Figure 10. All the package pins appear in Table 19 and are sorted by bank number, then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. The CP132 footprint has eight I/O banks. However, the voltage supplies for the two I/O banks along an edge are connected together internally. Consequently, there are four output voltage supplies, labeled VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM, and VCCO_LEFT. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 19: CP132 Package Pinout
Bank 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 XC3S50 Pin Name IO_L21P_2 IO_L23N_2/VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L40N_2 IO_L40P_2/VREF_2 IO_L01N_3/VRP_3 IO_L01P_3/VRN_3 IO_L20N_3 IO_L20P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/VREF_3 IO_L24N_3 IO_L24P_3 IO_L40N_3/VREF_3 IO_L40P_3 IO/VREF_4 IO_L01N_4/VRP_4 IO_L01P_4/VRN_4 IO_L27N_4/DIN/D0 IO_L27P_4/D1 IO_L30N_4/D2 IO_L30P_4/D3 IO_L31N_4/INIT_B IO_L31P_4/DOUT/BUSY IO_L32N_4/GCLK1 IO_L32P_4/GCLK0 IO_L01N_5/RDWR_B IO_L01P_5/CS_B IO_L27N_5/VREF_5 IO_L27P_5 IO_L28N_5/D6 IO_L28P_5/D7 IO_L31N_5/D4 IO_L31P_5/D5 IO_L32N_5/GCLK3 IO_L32P_5/GCLK2 IO_L01N_6/VRP_6 IO_L01P_6/VRN_6 CP132 Ball F12 F13 F14 G12 G13 G14 H12 N13 N14 L12 M14 L14 L13 K13 K12 J12 K14 H14 J13 N12 P12 M11 M10 N10 N9 P9 M8 N8 P8 M7 P2 N2 M4 P3 P4 N4 M6 P5 P7 P6 L3 M1 Type I/O VREF I/O I/O I/O I/O VREF DCI DCI I/O I/O I/O I/O I/O VREF I/O I/O VREF I/O VREF DCI DCI DUAL DUAL DUAL DUAL DUAL DUAL GCLK GCLK DUAL DUAL VREF I/O DUAL DUAL DUAL DUAL GCLK GCLK DCI DCI
Pinout Table
Table 19: CP132 Package Pinout
Bank 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 XC3S50 Pin Name IO_L01N_0/VRP_0 IO_L01P_0/VRN_0 IO_L27N_0 IO_L27P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/VREF_0 IO_L32N_0/GCLK7 IO_L32P_0/GCLK6 IO_L01N_1/VRP_1 IO_L01P_1/VRN_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L31N_1/VREF_1 IO_L31P_1 IO_L32N_1/GCLK5 IO_L32P_1/GCLK4 IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 CP132 Ball A3 C4 C5 B5 B6 A6 C7 B7 A7 C8 A13 B13 C11 A12 A11 B11 C9 A10 A8 A9 D12 C14 E12 E13 E14 Type DCI DCI I/O I/O I/O I/O I/O VREF GCLK GCLK DCI DCI I/O I/O I/O I/O VREF I/O GCLK GCLK DCI DCI I/O I/O I/O
3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6
28
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 19: CP132 Package Pinout
CP132 Ball K3 K2 K1 J3 J2 J1 H3 H2 H1 G3 B2 B1 C1 D3 D1 D2 E2 E3 F3 E1 G1 F2 B12 A4 B8 D13 H13 M12 N7 P11 N3 G2 L2 Type I/O I/O I/O I/O I/O I/O VREF I/O I/O VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO Bank 6,7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX XC3S50 Pin Name VCCO_LEFT GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS CP132 Ball C3 B4 B9 C2 C12 D14 F1 J14 L1 M3 M13 N6 N11 A5 C10 M5 P10 B10 C6 M9 N5 P14 P13 B3 N1 M2 P1 A2 B14 A1 C13 A14 Type VCCO GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
Table 19: CP132 Package Pinout
Bank 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 0,1 0,1 0,1 2,3 2,3 2,3 4,5 4,5 4,5 6,7 6,7 XC3S50 Pin Name IO_L20N_6 IO_L20P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/VREF_6 IO_L24P_6 IO_L40N_6 IO_L40P_6/VREF_6 IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_TOP VCCO_TOP VCCO_TOP VCCO_RIGHT VCCO_RIGHT VCCO_RIGHT VCCO_BOTTOM VCCO_BOTTOM VCCO_BOTTOM VCCO_LEFT VCCO_LEFT
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
29
Spartan-3 FPGA Family: Pinout Descriptions
R
User I/Os by Bank
Table 20 indicates how the 89 available user-I/O pins are distributed between the eight I/O banks on the CP132 pack-
age. There are only four output banks, each with its own VCCO voltage input.
Table 20: User I/Os Per Bank for XC3S50 in CP132 Package Maximum I/O 10 10 12 12 11 10 12 12 All Possible I/O Pins by Type I/O 5 5 8 8 0 1 8 9 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 0 2 2 VREF 1 1 2 2 1 1 2 1 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
30
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
CP132 Footprint
VCCO_TOP for Top Edge Outputs Bank 0 Bank 1
1 A B C D E F G H J
Bank 6
TDI
2
PROG_B
3
I/O L01N_0 VRP_0 HSWAP_ EN
4
VCCO_ TOP
5
VCCAUX
6
I/O L30P_0
7
I/O L32N_0 GCLK7 I/O L31P_0 VREF_0 I/O L31N_0
8
I/O L32N_1 GCLK5 VCCO_ TOP I/O L32P_0 GCLK6
9
I/O L32P_1 GCLK4
10
I/O L31P_1
11
I/O L28N_1
12
I/O L27P_1
13
I/O L01N_1 VRP_1 I/O L01P_1 VRN_1
14
TMS
I/O L01P_7 VRN_7 I/O L21N_7
I/O L01N_7 VRP_7
GND
I/O L27P_0
I/O L30N_0
GND
VCCINT
I/O L28P_1
VCCO_ TOP
TCK
GND
VCCO_ LEFT
I/O L01P_0 VRN_0
I/O L27N_0
VCCINT
I/O L31N_1 VREF_1
VCCAUX
I/O L27N_1
GND
TDO
I/O L01P_2 VRN_2
Bank 7
I/O L22N_7
I/O L22P_7
I/O L21P_7
I/O L01N_2 VRP_2 I/O L20N_2
VCCO_ RIGHT
GND
I/O L24P_7
I/O L23N_7
I/O L23P_7
I/O L20P_2 I/O L23N_2 VREF_2 I/O L24P_2
I/O L21N_2
VCCO_LEFT for Left Edge Outputs
GND
I/O L40P_7
I/O L24N_7 I/O L40P_6 VREF_6 I/O L24N_6 VREF_6 I/O L22P_6
I/O L21P_2
I/O L23P_2
Bank 2 VCCO_RIGHT for Right Edge Outputs Bank 3
I/O L40N_7 VREF_7 I/O L40N_6
VCCO_ LEFT
I/O L24N_2 I/O L40P_2 VREF_2 I/O L24N_3 I/O L23P_3 VREF_3 I/O L20N_3 I/O L27N_5 VREF_5 I/O L28P_5 D7 I/O L28N_5 D6 I/O L31N_5 D4 I/O L32P_4 GCLK0 VCCO_ BOTTOM I/O L31N_4 INIT_B I/O L31P_4 DOUT BUSY I/O L32N_4 GCLK1 I/O L27N_4 DIN D0 I/O L27P_4 D1
I/O L40N_2 I/O L40N_3 VREF_3
I/O L24P_6
VCCO_ RIGHT
I/O L23P_6
I/O L23N_6
I/O L40P_3
GND
K L M N P
I/O L22N_6
I/O L20P_6
I/O L20N_6 I/O L01N_6 VRP_6
I/O L23N_3
I/O L24P_3
GND
VCCO_ LEFT
I/O L22P_3
I/O L22N_3
I/O L01P_6 VRN_6
M1
GND
VCCAUX
VCCINT
I/O L01P_4 VRN_4
VCCO_ RIGHT
GND
I/O L20P_3
I/O L01P_3 VRN_3
M0
I/O L01P_5 CS_B I/O L01N_5 RDWR_B
VCCO_ BOTTOM
VCCINT
GND
I/O L30N_4 D2 I/O L30P_4 D3
GND
I/O VREF_4 I/O L01N_4 VRP_4
I/O L01N_3 VRP_3
M2
I/O L27P_5
I/O L31P_5 D5
I/O L32P_5 GCLK2
I/O L32N_5 GCLK3
VCCAUX
VCCO_ BOTTOM
DONE
CCLK
Bank 5 VCCO_BOTTOM for Bottom Edge Outputs
Bank 4
DS099-4_17_011005
Figure 9: CP132 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
44 14 7 0 I/O: Unrestricted, general-purpose user I/O DCI: User I/O or reference resistor input for bank CONFIG: Dedicated configuration pins N.C.: No unconnected pins in this package 12 DUAL: Configuration pin, then possible user I/O GCLK: User I/O, input, or global buffer input JTAG: Dedicated JTAG port pins GND: Ground 11 12 4 4 VREF: User I/O or input voltage reference for bank VCCO: Output voltage supply for bank VCCINT: Internal core voltage supply (+1.2V) VCCAUX: Auxiliary voltage supply (+2.5V)
8
4 12
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
31
Spartan-3 FPGA Family: Pinout Descriptions
R
TQ144: 144-lead Thin Quad Flat Package
The XC3S50, the XC3S200, and the XC3S400 are available in the 144-lead thin quad flat package, TQ144. Consequently, there is only one footprint for this package as shown in Table 21 and Figure 10. The TQ144 package only has four separate VCCO inputs, unlike the other packages, which have eight separate VCCO inputs. The TQ144 package has a separate VCCO input for the top, bottom, left, and right. However, there are still eight separate I/O banks, as shown in Table 21 and Figure 10. Banks 0 and 1 share the VCCO_TOP input, Banks 2 and 3 share the VCCO_RIGHT input, Banks 4 and 5 share the VCCO_BOTTOM input, and Banks 6 and 7 share the VCCO_LEFT input. All the package pins appear in Table 21 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 21: TQ144 Package Pinout (Continued)
XC3S50 XC3S200 XC3S400 Pin Name IO_L01P_2/VRN_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L40N_2 IO_L40P_2/VREF_2 IO IO_L01N_3/VRP_3 IO_L01P_3/VRN_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/VREF_3 IO_L24N_3 IO_L24P_3 IO_L40N_3/VREF_3 IO_L40P_3 IO/VREF_4 IO_L01N_4/VRP_4 IO_L01P_4/VRN_4 IO_L27N_4/DIN/D0 IO_L27P_4/D1 IO_L30N_4/D2 IO_L30P_4/D3 IO_L31N_4/INIT_B IO_L31P_4/DOUT/BUSY IO_L32N_4/GCLK1 IO_L32P_4/GCLK0 IO/VREF_5 IO_L01N_5/RDWR_B IO_L01P_5/CS_B
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
TQ144 Pin Number P107 P105 P104 P103 P102 P100 P99 P98 P97 P96 P95 P93 P92 P76 P74 P73 P78 P77 P80 P79 P83 P82 P85 P84 P87 P86 P90 P89 P70 P69 P68 P65 P63 P60 P59 P58 P57 P56 P55 P44 P41 P40
Type DCI I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF I/O DCI DCI I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O VREF I/O VREF DCI DCI DUAL DUAL DUAL DUAL DUAL DUAL GCLK GCLK VREF DUAL DUAL
Pinout Table
Table 21: TQ144 Package Pinout
XC3S50 XC3S200 XC3S400 Pin Name IO_L01N_0/VRP_0 IO_L01P_0/VRN_0 IO_L27N_0 IO_L27P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/VREF_0 IO_L32N_0/GCLK7 IO_L32P_0/GCLK6 IO IO_L01N_1/VRP_1 IO_L01P_1/VRN_1 IO_L28N_1 IO_L28P_1 IO_L31N_1/VREF_1 IO_L31P_1 IO_L32N_1/GCLK5 IO_L32P_1/GCLK4 IO_L01N_2/VRP_2
Bank 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2
TQ144 Pin Number P141 P140 P137 P135 P132 P131 P130 P129 P128 P127 P116 P113 P112 P119 P118 P123 P122 P125 P124 P108
Type DCI DCI I/O I/O I/O I/O I/O VREF GCLK GCLK I/O DCI DCI I/O I/O VREF I/O GCLK GCLK DCI
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5
32
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 21: TQ144 Package Pinout (Continued)
XC3S50 XC3S200 XC3S400 Pin Name VCCO_BOTTOM VCCO_BOTTOM VCCO_LEFT VCCO_LEFT VCCO_LEFT GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS
Table 21: TQ144 Package Pinout (Continued)
XC3S50 XC3S200 XC3S400 Pin Name IO_L28N_5/D6 IO_L28P_5/D7 IO_L31N_5/D4 IO_L31P_5/D5 IO_L32N_5/GCLK3 IO_L32P_5/GCLK2 IO_L01N_6/VRP_6 IO_L01P_6/VRN_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/VREF_6 IO_L24P_6 IO_L40N_6 IO_L40P_6/VREF_6 IO/VREF_7 IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_TOP VCCO_TOP VCCO_TOP VCCO_RIGHT VCCO_RIGHT VCCO_RIGHT VCCO_BOTTOM
Bank 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0,1 0,1 0,1 2,3 2,3 2,3 4,5
TQ144 Pin Number P47 P46 P51 P50 P53 P52 P36 P35 P33 P32 P31 P30 P28 P27 P26 P25 P24 P23 P21 P20 P4 P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18 P17 P126 P138 P115 P106 P75 P91 P54
Type DUAL DUAL DUAL DUAL GCLK GCLK DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO
Bank 4,5 4,5 6,7 6,7 6,7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
TQ144 Pin Number P43 P66 P19 P34 P3 P136 P139 P114 P117 P94 P101 P81 P88 P64 P67 P42 P45 P22 P29 P9 P16 P134 P120 P62 P48 P133 P121 P61 P49 P72 P71 P142 P38 P37 P39 P143 P110 P144 P109 P111
Type VCCO VCCO VCCO VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
33
Spartan-3 FPGA Family: Pinout Descriptions
R
User I/Os by Bank
Table 22 indicates how the available user-I/O pins are distributed between the eight I/O banks on the TQ144 package. Table 22: User I/Os Per Bank in TQ144 Package Maximum I/O 10 9 14 15 11 9 14 15 All Possible I/O Pins by Type I/O 5 4 10 11 0 0 10 11 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 0 2 2 VREF 1 1 2 2 1 1 2 2 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
34
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
TQ144 Footprint
144 TDI 143 PROG_B 142 HSWAP_EN 141 IO_L01N_0/VRP_0 140 IO_L01P_0/VRN_0
139 138 137 136 135
134
133 132 131 130 129
128 127 126
125
124 123
122 121
120
119 118
117 116
115
114 113
112 111
110
IO_L01P_7/VRN_7 IO_L01N_7/VRP_7 VCCO_LEFT IO/VREF_7 IO_L20P_7 IO_L20N_7 IO_L21P_7 IO_L21N_7 GND IO_L22P_7 IO_L22N_7 IO_L23P_7 IO_L23N_7 IO_L24P_7 IO_L24N_7 GND IO_L40P_7 IO_L40N_7/VREF_7 VCCO_LEFT IO_L40P_6/VREF_6 IO_L40N_6 GND IO_L24P_6 IO_L24N_6/VREF_6 IO_L23P_6 IO_L23N_6 IO_L22P_6 IO_L22N_6 GND IO_L21P_6 IO_L21N_6 IO_L20P_6 IO_L20N_6 VCCO_LEFT IO_L01P_6/VRN_6 IO_L01N_6/VRP_6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
109
GND VCCO_TOP IO_L27N_0 GND IO_L27P_0 VCCAUX VCCINT IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/VREF_0 IO_L32N_0/GCLK7 IO_L32P_0/GCLK6 VCCO_TOP IO_L32N_1/GCLK5 IO_L32P_1/GCLK4 IO_L31N_1/VREF_1 IO_L31P_1 VCCINT VCCAUX IO_L28N_1 IO_L28P_1 GND IO VCCO_TOP GND IO_L01N_1/VRP_1 IO_L01P_1/VRN_1 TMS TCK TDO
Bank 0
Bank 1
VCCO for Top Edge
X
Bank 7
VCCO for Bottom Edge
Bank 5
(no DCI)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Bank 4
61 62 63 64 65 66 67 68 69 70 71
IO_L31P_4/DOUT/BUSY
108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73
IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 VCCO_RIGHT IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 GND IO_L22N_2 IO_L22P_2 IO_L23N_2/VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 GND IO_L40N_2 IO_L40P_2/VREF_2 VCCO_RIGHT IO_L40N_3/VREF_3 IO_L40P_3 GND IO_L24N_3 IO_L24P_3 IO_L23N_3 IO_L23P_3/VREF_3 IO_L22N_3 IO_L22P_3 GND IO_L21N_3 IO_L21P_3 IO_L20N_3 IO_L20P_3 IO VCCO_RIGHT IO_L01N_3/VRP_3 IO_L01P_3/VRN_3
VCCO for Left Edge
VCCO for Right Edge IO_L31N_4/INIT_B IO_L30P_4/D3 IO_L30N_4/D2 VCCINT VCCAUX IO_L27P_4/D1 GND IO_L27N_4/DIN/D0 VCCO_BOTTOM GND IO_L01P_4/VRN_4 IO_L01N_4/VRP_4 IO/VREF_4 DONE CCLK
72
M1 M0 M2 IO_L01P_5/CS_B IO_L01N_5/RDWR_B GND VCCO_BOTTOM IO/VREF_5 GND IO_L28P_5/D7 IO_L28N_5/D6 VCCAUX VCCINT IO_L31P_5/D5 IO_L31N_5/D4 IO_L32P_5/GCLK2 IO_L32N_5/GCLK3 VCCO_BOTTOM IO_L32P_4/GCLK0 IO_L32N_4/GCLK1
Bank 6
Bank 3
Bank 2
DS099-4_08_121103
Figure 10: TQ144 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
51 14 7 0 I/O: Unrestricted, general-purpose user I/O DCI: User I/O or reference resistor input for bank CONFIG: Dedicated configuration pins N.C.: No unconnected pins in this package 12 DUAL: Configuration pin, then possible user I/O GCLK: User I/O or global clock buffer input JTAG: Dedicated JTAG port pins GND: Ground 12 12 4 4 VREF: User I/O or input voltage reference for bank VCCO: Output voltage supply for bank VCCINT: Internal core voltage supply (+1.2V) VCCAUX: Auxiliary voltage supply (+2.5V)
8
4 16
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
35
Spartan-3 FPGA Family: Pinout Descriptions
R
PQ208: 208-lead Plastic Quad Flat Pack
The 208-lead plastic quad flat package, PQ208, supports three different Spartan-3 devices, including the XC3S50, the XC3S200, and the XC3S400. The footprints for the XC3S200 and XC3S400 are identical, as shown in Table 23 and Figure 11. The XC3S50, however, has fewer I/O pins resulting in 17 unconnected pins on the PQ208 package, labeled as "N.C." In Table 23 and Figure 11, these unconnected pins are indicated with a black diamond symbol ( ). All the package pins appear in Table 23 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. If there is a difference between the XC3S50 pinout and the pinout for the XC3S200 and XC3S400, then that difference is highlighted in Table 23. If the table entry is shaded grey, then there is an unconnected pin on the XC3S50 that maps to a user-I/O pin on the XC3S200 and XC3S400. If the table entry is shaded tan, then the unconnected pin on the XC3S50 maps to a VREF-type pin on the XC3S200 and XC3S400. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S50 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S50 device to an XC3S200 or XC3S400 FPGA without changing the printed circuit board. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 IO IO IO IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 N.C. ( ) IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 XC3S200 XC3S400 Pin Name IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 IO IO IO IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 IO/VREF_2 IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 PQ208 Pin Number P187 P185 P184 P183 P188 P201 P167 P175 P182 P162 P161 P166 P165 P169 P168 P172 P171 P178 P176 P181 P180 P164 P177 P154 P156 P155 P152 P150 P149 P148 P147 P146 P144 P143
Bank 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O VREF GCLK GCLK VCCO VCCO I/O I/O I/O DCI DCI VREF I/O I/O I/O I/O I/O VREF I/O GCLK GCLK VCCO VCCO VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O
Pinout Table
Table 23: PQ208 Package Pinout
XC3S50 Pin Name IO IO N.C. ( ) IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L25N_0 IO_L25P_0 IO_L27N_0 IO_L27P_0 IO_L30N_0 IO_L30P_0 XC3S200 XC3S400 Pin Name IO IO IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L25N_0 IO_L25P_0 IO_L27N_0 IO_L27P_0 IO_L30N_0 IO_L30P_0 PQ208 Pin Number P189 P197 P200 P205 P204 P203 P199 P198 P196 P194 P191 P190
1 Type I/O I/O VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O 1 1 2 2 2 2 2 2 2 2 2 2 2
Bank 0 0 0 0 0 0 0 0 0 0 0 0
36
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L25N_4 IO_L25P_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 IO IO IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L31N_5/ D4 IO_L31P_5/ D5 XC3S200 XC3S400 Pin Name IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L25N_4 IO_L25P_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 IO IO IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L31N_5/ D4 IO_L31P_5/ D5 PQ208 Pin Number P102 P101 P100 P95 P94 P92 P90 P87 P86 P83 P81 P80 P79 P84 P98 P63 P71 P78 P58 P57 P62 P61 P65 P64 P68 P67 P74 P72
Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 N.C. ( ) N.C. ( ) IO_L40N_2 IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 N.C. ( ) N.C. ( ) IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 N.C. ( ) N.C. ( ) IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 IO N.C. ( ) IO/VREF_4 N.C. ( ) XC3S200 XC3S400 Pin Name IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 IO IO IO/VREF_4 IO/VREF_4 PQ208 Pin Number P141 P140 P139 P138 P137 P135 P133 P132 P136 P153 P107 P106 P109 P108 P113 P111 P115 P114 P117 P116 P120 P119 P123 P122 P125 P124 P128 P126 P131 P130 P110 P127 P93 P97 P85 P96
Bank 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4
Type VREF I/O I/O I/O I/O I/O I/O VREF VCCO VCCO DCI DCI I/O VREF
Bank 4 4 4 4 4 4 4 4 4 4 4 4
Type VREF DCI DCI I/O I/O DUAL DUAL DUAL DUAL DUAL DUAL GCLK GCLK VCCO VCCO I/O I/O VREF DUAL DUAL DCI DCI VREF I/O DUAL DUAL DUAL DUAL
I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF I/O VCCO VCCO I/O I/O VREF VREF 5 5 5 5 5 5 5 4 4 5 5 5 5 5 5 4
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
37
Spartan-3 FPGA Family: Pinout Descriptions Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 N.C. ( ) IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 N.C. ( ) N.C. ( ) IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 N.C. ( ) N.C. ( ) IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 XC3S200 XC3S400 Pin Name IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 IO/VREF_6 IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 PQ208 Pin Number P77 P76 P60 P73 P50 P52 P51 P48 P46 P45 P44 P43 P42 P40 P39 P37 P36 P35 P34 P33 P31 P29 P28 P32 P49 P3 P2 P5 P4 P9 P7 P11 P10 P13
R
Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 N.C. ( ) N.C. ( ) IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S200 XC3S400 Pin Name IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND PQ208 Pin Number P12 P16 P15 P19 P18 P21 P20 P24 P22 P27 P26 P6 P23 P1 P186 P195 P202 P163 P170 P179 P134 P145 P151 P157 P112 P118 P129 P82 P91 P99 P105 P53 P59 P66 P75 P30 P41 P47 P8 P14
Bank 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7
Type GCLK GCLK VCCO VCCO VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF VCCO VCCO DCI DCI I/O VREF VREF I/O I/O I/O I/O
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
38
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name XC3S200 XC3S400 Pin Name HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS PQ208 Pin Number P206 P55 P54 P56 P207 P159 P208 P158 P160
Table 23: PQ208 Package Pinout (Continued)
XC3S50 Pin Name GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT XC3S200 XC3S400 Pin Name GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT CCLK DONE PQ208 Pin Number P25 P193 P173 P142 P121 P89 P69 P38 P17 P192 P174 P88 P70 P104 P103
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT CONFIG CONFIG
Bank
Type CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
VCCAUX HSWAP_EN VCCAUX M0 VCCAUX M1 VCCAUX M2 VCCAUX PROG_B VCCAUX TCK VCCAUX TDI VCCAUX TDO VCCAUX TMS
User I/Os by Bank
Table 24 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S50 in the PQ208 package. Similarly, Table 25 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S200 and XC3S400 in the PQ208 package.
VCCAUX CCLK VCCAUX DONE
Table 24: User I/Os Per Bank for XC3S50 in PQ208 Package Maximum I/O 15 15 16 16 15 15 16 16 All Possible I/O Pins by Type I/O 9 9 13 12 3 3 12 12 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 2 2 2 2 2 2 2 2 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
39
Spartan-3 FPGA Family: Pinout Descriptions Table 25: User I/Os Per Bank for XC3S200 and XC3S400 in PQ208 Package Maximum I/O 16 15 19 20 17 15 19 20 All Possible I/O Pins by Type I/O 9 9 14 15 4 3 14 15 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 3 2 3 3 3 2 3 3 GCLK 2 2 0 0 2 2 0 0
R
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
40
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
41
Spartan-3 FPGA Family: Pinout Descriptions
R
185 IO_L31P_0/VREF_0 76
184 IO_L32N_0/GCLK7 77
200 IO/VREF_0 (
206 HSWAP_EN
205 IO/VREF_0
199 IO_L25N_0
196 IO_L27N_0
191 IO_L30N_0
187 IO_L31N_0
198 IO_L25P_0
194 IO_L27P_0
190 IO_L30P_0
193 VCCAUX
207 PROG_B
201 VCCO_0
188 VCCO_0
192 VCCINT
Left Half of Package (top view)
XC3S50 (124 max. user I/O) I/O: Unrestricted, 72 general-purpose user I/O VREF: User I/O or input 16 voltage reference for bank
208 TDI
17
N.C.: Unconnected pins for XC3S50 ( )
22
VREF: User I/O or input voltage reference for bank N.C.: No unconnected pins in this package
0
All devices DUAL: Configuration pin, 12 then possible user I/O
8
GCLK: User I/O or global clock buffer input DCI: User I/O or reference resistor input for bank CONFIG: Dedicated configuration pins JTAG: Dedicated JTAG port pins VCCINT: Internal core voltage supply (+1.2V) VCCO: Output voltage supply for bank VCCAUX: Auxiliary voltage supply (+2.5V) GND: Ground
16
7
4
4
12
8 28
Bank 6
Bank 7
XC3S200, XC3S400 (141 max user I/O) I/O: Unrestricted, 83 general-purpose user I/O
GND IO_L01P_7/VRN_7 IO_L01N_7/VRP_7 ( ) IO_L16P_7/VREF_7 ( ) IO_L16N_7 VCCO_7 IO_L19P_7 GND IO_L19N_7/VREF_7 IO_L20P_7 IO_L20N_7 IO_L21P_7 IO_L21N_7 GND IO_L22P_7 IO_L22N_7 VCCA U X IO_L23P_7 IO_L23N_7 IO_L24P_7 IO_L24N_7 ( ) IO_L39P_7 VCCO_7 ( ) IO_L39N_7 GND IO_L40P_7 IO_L40N_7/VREF_7 IO_L40P_6/VREF_6 IO_L40N_6 GND ( ) IO_L39P_6 VCCO_6 ( ) IO_L39N_6 IO_L24P_6 IO_L24N_6/VREF_6 IO_L23P_6 IO_L23N_6 VCCAUX IO_L22P_6 IO_L22N_6 GND IO_L21P_6 IO_L21N_6 IO_L20P_6 IO_L20N_6 IO_L19P_6 GND IO_L19N_6 VCCO_6 ( ) IO/VREF_6 IO_L01P_6/VRN_6 IO_L01N_6/VRP_6
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Bank 0
Bank 5
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 78
Figure 11: PQ208 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.
42
www.xilinx.com
GND M1 M0 M2 IO_L01P_5/CS_B IO_L01N_5/RDWR_B GND VCCO_5 IO_L10P_5/VRN_5 IO_L10N_5/VRP_5 IO IO_L27P_5 IO_L27N_5/VREF_5 GND IO_L28P_5/D7 IO_L28N_5/D6 VCCAUX VCCINT IO IO_L31P_5/D5 VCCO_5 IO_L31N_5/D4 GND IO_L32P_5/GCLK2 IO_L32N_5/GCLK3 IO/VREF_5
DS099-4_09a_121103
DS099-4 (v1.6) January 17, 2005 Product Specification
183 IO_L32P_0/GCLK6
204 IO_L01N_0/VRP_0
203 IO_L01P_0/VRN_0
PQ208 Footprint
202 GND
)
195 GND
186 GND
197 IO
189 IO
R
Spartan-3 FPGA Family: Pinout Descriptions
178 IO_L31N_1/VREF_1
166 IO_L10N_1/VREF_1
181 IO_L32N_1/GCLK5
180 IO_L32P_1/GCLK4
162 IO_L01N_1/VRP_1
161 IO_L01P_1/VRN_1
172 IO_L28N_1
169 IO_L27N_1
176 IO_L31P_1
171 IO_L28P_1
168 IO_L27P_1
165 IO_L10P_1
173 VCCAUX
177 VCCO_1
164 VCCO_1
Right Half of Package (top view)
157 GND 158 TDO 160 TMS 159 TCK
174 VCCINT
179 GND
170 GND
163 GND
182 IO
175 IO
167 IO
Bank 1
Bank 4
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105
IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 IO/VREF_2 ( ) VCCO_2 IO_L19N_2 GND IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 GND IO_L22N_2 IO_L22P_2 VCCAUX IO_L23N_2/VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L39N_2 ( ) VCCO_2 IO_L39P_2 ( ) GND IO_L40N_2 IO_L40P_2/VREF_2 IO_L40N_3/VREF_3 IO_L40P_3 GND IO_L39N_3 ( ) VCCO_3 IO_L39P_3 ( ) IO_L24N_3 IO_L24P_3 IO_L23N_3 IO_L23P_3/VREF_3 VCCAUX IO_L22N_3 IO_L22P_3 GND IO_L21N_3 IO_L21P_3 IO_L20N_3 IO_L20P_3 IO_L19N_3 GND IO_L19P_3 VCCO_3 IO_L17N_3 ( ) IO_L17P_3/VREF_3 ( IO_L01N_3/VRP_3 IO_L01P_3/VRN_3 GND
Bank 3
Bank 2
)
IO_L32P_4/GCLK0 IO_L32N_4/GCLK1 IO_L31P_4/DOUT/BUSY GND IO_L31N_4/INIT_B VCCO_4 IO/VREF_4 IO_L30P_4/D3 IO_L30N_4/D2 VCCINT VCCAUX IO_L27P_4/D1 GND D IO_L27N_4/DIN/D0 IO IO_L25P_4 IO_L25N_4 ( ) IO/VREF_4 ( ) IO VCCO_4 GND IO_L01P_4/VRN_4 IO_L01N_4/VRP_4 IO/VREF_4 DONE CCLK
DS099-4_9b_121103
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
43
Spartan-3 FPGA Family: Pinout Descriptions
R
FT256: 256-lead Fine-pitch Thin Ball Grid Array
The 256-lead fine-pitch thin ball grid array package, FT256, supports three different Spartan-3 devices, including the XC3S200, the XC3S400, and the XC3S1000. The footprints for all three devices are identical, as shown in Table 26 and Figure 12. All the package pins appear in Table 26 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name IO IO/VREF_1 IO_L01N_1/VRP_1 IO_L01P_1/VRN_1 IO_L10N_1/VREF_1 IO_L10P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/VREF_1 IO_L31P_1 IO_L32N_1/GCLK5 IO_L32P_1/GCLK4 VCCO_1 VCCO_1 VCCO_1 IO IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 IO_L16N_2 IO_L16P_2 IO_L17N_2 IO_L17P_2/VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 FT256 Pin Number C10 D12 A14 B14 A13 B13 B12 C12 D11 E11 B11 C11 D10 E10 A10 B10 C9 D9 E9 F9 F10 G16 B16 C16 C15 D14 D15 D16 E13 E14 E15 E16 F12 F13 F14 F15 G12 G13 G14 G15
Bank 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O VREF DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O GCLK GCLK VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O
Pinout Table
Table 26: FT256 Package Pinout
XC3S200 XC3S400 XC3S1000 Pin Name IO IO IO/VREF_0 IO/VREF_0 IO_L01N_0/VRP_0 IO_L01P_0/VRN_0 IO_L25N_0 IO_L25P_0 IO_L27N_0 IO_L27P_0 IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/VREF_0 IO_L32N_0/GCLK7 IO_L32P_0/GCLK6 VCCO_0 VCCO_0 VCCO_0 IO IO FT256 Pin Number A5 A7 A3 D5 B4 A4 C5 B5 E6 D6 C6 B6 E7 D7 C7 B7 D8 C8 B8 A8 E8 F7 F8 A9 A12
1 1 Type I/O I/O VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF GCLK GCLK VCCO VCCO VCCO I/O I/O 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
44
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name IO_L25N_4 IO_L25P_4 IO_L27N_4/DIN/D0 IO_L27P_4/D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/D2 IO_L30P_4/D3 IO_L31N_4/INIT_B IO_L31P_4/DOUT/BUSY IO_L32N_4/GCLK1 IO_L32P_4/GCLK0 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO/VREF_5 IO_L01N_5/RDWR_B IO_L01P_5/CS_B IO_L10N_5/VRP_5 IO_L10P_5/VRN_5 IO_L27N_5/VREF_5 IO_L27P_5 IO_L28N_5/D6 IO_L28P_5/D7 IO_L29N_5 IO_L29P_5/VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/D4 IO_L31P_5/D5 IO_L32N_5/GCLK3 IO_L32P_5/GCLK2 VCCO_5 VCCO_5 VCCO_5 FT256 Pin Number P12 R12 M11 N11 P11 R11 M10 N10 P10 R10 N9 P9 R9 T9 L9 L10 M9 N5 P7 T5 T8 T3 R3 T4 R4 R5 P5 N6 M6 R6 P6 N7 M7 T7 R7 P8 N8 L7 L8 M8
Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/VREF_2 VCCO_2 VCCO_2 VCCO_2 IO IO_L01N_3/VRP_3 IO_L01P_3/VRN_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/VREF_3 IO_L24N_3 IO_L24P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/VRP_4 IO_L01P_4/VRN_4 FT256 Pin Number H13 H14 H15 H16 G11 H11 H12 K15 P16 R16 P15 P14 N16 N15 M14 N14 M16 M15 L13 M13 L15 L14 K12 L12 K14 K13 J14 J13 J16 K16 J11 J12 K11 T12 T14 N12 P13 T10 R13 T13
Bank 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4
Type I/O I/O I/O VREF VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO I/O I/O VREF VREF VREF DCI DCI
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Type I/O I/O DUAL DUAL I/O I/O I/O I/O DUAL DUAL DUAL DUAL GCLK GCLK VCCO VCCO VCCO I/O I/O I/O VREF DUAL DUAL DCI DCI VREF I/O DUAL DUAL I/O VREF I/O I/O DUAL DUAL GCLK GCLK VCCO VCCO VCCO
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
45
Spartan-3 FPGA Family: Pinout Descriptions Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name IO IO_L01N_6/VRP_6 IO_L01P_6/VRN_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/VREF_6 IO_L24P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/VREF_6 VCCO_6 VCCO_6 VCCO_6 IO IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L16N_7 IO_L16P_7/VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 FT256 Pin Number K1 R1 P1 P2 N3 N2 N1 M4 M3 M2 M1 L5 L4 L3 L2 K5 K4 K3 K2 J4 J3 J2 J1 J5 J6 K6 G2 C1 B1 C2 C3 D1 D2 E3 D3 E1 E2 F4 E4 F2
R
Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FT256 Pin Number F3 G5 F5 G3 G4 H3 H4 H1 G1 G6 H5 H6 A1 A16 B2 B9 B15 F6 F11 G7 G8 G9 G10 H2 H7 H8 H9 H10 J7 J8 J9 J10 J15 K7 K8 K9 K10 L6 L11 R2
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type I/O DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF VCCO VCCO VCCO I/O DCI DCI I/O VREF I/O I/O VREF I/O I/O I/O I/O I/O I/O
Bank 7 7 7 7 7 7 7 7 7 7 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
46
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name VCCINT VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS FT256 Pin Number N4 N13 T15 R14 C4 P3 T2 P4 B3 C14 A2 A15 C13
Table 26: FT256 Package Pinout (Continued)
XC3S200 XC3S400 XC3S1000 Pin Name GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT FT256 Pin Number R8 R15 T1 T16 A6 A11 F1 F16 L1 L16 T6 T11 D4 D13 E5 E12 M5 M12
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
Bank N/A N/A VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
Type VCCINT VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
User I/Os by Bank
Table 27 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FT256 package.
Table 27: User I/Os Per Bank in FT256 Package Maximum I/O 20 20 23 23 21 20 23 23 All Possible I/O Pins by Type I/O 13 13 18 18 8 7 18 18 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 3 3 3 3 3 3 3 3 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
47
Spartan-3 FPGA Family: Pinout Descriptions
R
FT256 Footprint
1 A B C D Bank 7 E F G H J K L Bank 6 M N P R T
GND I/O L01P_7 VRN_7 I/O L01N_7 VRP_7
2
TDI
3
4
Bank 0 5 6
I/O VCCAUX
7
I/O
8
I/O L32P_0 GCLK6
9
I/O
10
Bank 1 11 12
I/O
13
14
15
TDO
16
GND I/O L01N_2 VRP_2 2
I/O IO VREF_0 L01P_0 VRN_0
I/O L31N_1 VCCAUX VREF_1
I/O I/O L10N_1 L01N_1 VREF_1 VRP_1 I/O L01P_1 VRN_1 TCK
I/O GND PROG_B L01N_0 VRP_0
I/O I/O I/O I/O L32N_0 L25P_0 L28P_0 L30P_0 GCLK7
GND I/O L32N_1 GCLK5
I/O I/O I/O I/O L31P_1 L29N_1 L27N_1 L10P_1 I/O I/O L29P_1 L27P_1
GND
I/O I/O I/O I/O I/O I/O HSWAP_ L16P_7 L31P_0 L16N_7 L25N_0 L28N_0 L30N_0 EN VREF_7 VREF_0
I/O
TMS
I/O I/O L01P_2 L16N_2 VRN_2 2
IO I/O I/O I/O VCCINT VREF_0 L17N_7 L17P_7 L19P_7 I/O L20N_7
I/O I/O IO I/O I/O I/O I/O I/O I/O I/O VCCINT L32P_1 L17P_2 L27P_0 L29P_0 L31N_0 L30N_1 L28N_1 VREF_1 L16P_2 L17N_2 GCLK4 VREF_2
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO_0 VCCO_1 VCCINT VCCINT L19N_7 L20P_7 L21P_7 L27N_0 L29N_0 L30P_1 L28P_1 L19N_2 L19P_2 L20N_2 L20P_2 VREF_7 I/O I/O I/O I/O L22N_7 L22P_7 L21N_7 L23P_7 GND VCCO_0 VCCO_0 VCCO_1 VCCO_1 GND I/O I/O I/O I/O VCCAUX L21N_2 L21P_2 L22N_2 L22P_2
VCCAUX
I/O L40P_7 I/O L40N_7 VREF_7 I/O L40P_6 VREF_6 I/O
I/O
I/O I/O I/O VCCO_7 L24N_7 L24P_7 L23N_7 I/O I/O VCCO_7 VCCO_7 L39N_7 L39P_7
GND
GND
GND
GND
I/O I/O I/O I/O VCCO_2 L23N_2 L23P_2 L24N_2 L24P_2 VREF_2 VCCO_2 VCCO_2
I/O
GND
GND
GND
GND
GND
I/O I/O I/O I/O L40P_2 L39N_2 L39P_2 L40N_2 VREF_2 I/O I/O L39P_3 L39N_3 GND I/O L40N_3 VREF_3 I/O L40P_3
I/O I/O I/O VCCO_6 VCCO_6 L40N_6 L39P_6 L39N_6 I/O L24P_6 I/O I/O I/O VCCO_6 L24N_6 L23P_6 L23N_6 VREF_6 GND
GND
GND
GND
GND
VCCO_3 VCCO_3
GND
GND
GND
GND
VCCO_3
I/O I/O I/O L23N_3 L24P_3 L24N_3
I/O
VCCAUX
I/O I/O I/O I/O L22P_6 L22N_6 L21P_6 L21N_6
VCCO_5 VCCO_5 VCCO_4 VCCO_4
GND
I/O I/O I/O I/O VCCAUX L23P_3 L21N_3 L22P_3 L22N_3 VREF_3
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L27N_4 VCCINT VCCO_5 VCCO_4 VCCINT L28P_5 L21P_3 L19N_3 L20P_3 L20N_3 L20P_6 L20N_6 L19P_6 L19N_6 L30P_5 L29N_4 DIN D7 D0 I/O I/O I/O I/O I/O I/O IO I/O I/O I/O I/O I/O I/O VCCINT I/O L17P_6 L28N_5 L32P_5 L31N_4 L27P_4 VREF_4 VCCINT L17P_3 L17N_6 L16P_6 L30N_5 L29P_4 L19P_3 L17N_3 VREF_6 D6 GCLK2 INIT _B D1 VREF_3 I/O I/O L01P_6 L16N_6 VRN_6 I/O L01N_6 VRP_6 GND GND M0 M2 I/O L27P_5 I/O L29P_5 VREF_5 I/O I/O I/O I/O L31P_4 L32N_5 L30N_4 DOUT GCLK3 D2 BUSY I/O I/O GND L32N_4 L30P_4 GCLK1 D3 I/O IO I/O I/O I/O I/O L01N_3 L28N_4 L25N_4 VREF_4 L16P_3 L16N_3 VRP_3 3 I/O I/O I/O L01N_4 L28P_4 L25P_4 VRP_4 I/O I/O L01P_4 VRN_4 DONE GND I/O L01P_3 VRN_3 3 GND
I/O I/O I/O I/O I/O L01P_5 L10P_5 L27N_5 L31P_5 L29N_5 CS_B VRN_5 VREF_5 D5 I/O I/O L01N_5 L10N_5 RDWR_B VRP_5 I/O
M1
I/O IO VCCAUX L31N_5 VREF_5 D4
I/O IO L32P_4 VREF_4 VCCAUX GCLK0
I/O
CCLK
Bank 5
Bank 4
DS099-4_10_030503
Figure 12: FT256 Package Footprint (top view)
113 16 7 0 I/O: Unrestricted, general-purpose user I/O DCI: User I/O or reference resistor input for bank CONFIG: Dedicated configuration pins N.C.: No unconnected pins in this package 12 8 4 32 DUAL: Configuration pin, then possible user I/O GCLK: User I/O or global clock buffer input JTAG: Dedicated JTAG port pins GND: Ground 24 24 8 8 VREF: User I/O or input voltage reference for bank VCCO: Output voltage supply for bank VCCINT: Internal core voltage supply (+1.2V) VCCAUX: Auxiliary voltage supply (+2.5V)
48
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
Bank 3
Bank 2
R
Spartan-3 FPGA Family: Pinout Descriptions Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
IO_L32N_0/GCLK7 IO_L32P_0/GCLK6 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO/VREF_1 IO_L01N_1/VRP_1 IO_L01P_1/VRN_1 IO_L10N_1/VREF_1 IO_L10P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L24N_1 IO_L24P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/VREF_1 IO_L31P_1 IO_L32N_1/GCLK5 IO_L32P_1/GCLK4 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO IO_L01N_2/VRP_2 IO_L01P_2/VRN_2 IO_L16N_2 IO_L16P_2 IO_L17N_2
FG320: 320-lead Fine-pitch Ball Grid Array
The 320-lead fine-pitch ball grid array package, FG320, supports three different Spartan-3 devices, including the XC3S400, the XC3S1000, and the XC3S1500. The footprint for all three devices is identical, as shown in Table 28 and Figure 13. The FG320 package is an 18 x 18 array of solder balls minus the four center balls. All the package pins appear in Table 28 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Bank
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
FG320 Pin Number
E9 F9 B8 C6 G8 G9 A11 B13 D10 A12 A16 A17 A15 B15 C14 C15 A14 B14 D14 D13 E13 E12 C12 D12 F11 E11 C11 D11 A10 B10 E10 F10 B11 C13 G10 G11 J13 C16 C17 B18 C18 D17
Type
GCLK GCLK VCCO VCCO VCCO VCCO I/O I/O I/O VREF DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O GCLK GCLK VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O
Pinout Table
Table 28: FG320 Package Pinout XC3S400 XC3S1000 XC3S1500 Pin Name
IO IO IO/VREF_0 IO/VREF_0 IO_L01N_0/VRP_0 IO_L01P_0/VRN_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L15N_0 IO_L15P_0 IO_L25N_0 IO_L25P_0 IO_L27N_0 IO_L27P_0 IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/VREF_0
Bank
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FG320 Pin Number
D9 E7 B3 D6 A2 A3 B4 C4 C5 D5 A4 A5 B5 B6 C7 D7 C8 D8 E8 F8 A7 A8 B9 A9
1
Type
I/O I/O VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
49
Spartan-3 FPGA Family: Pinout Descriptions Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
IO_L17P_2/VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L27N_2 IO_L27P_2 IO_L34N_2/VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/VREF_2 VCCO_2 VCCO_2 VCCO_2 IO IO_L01N_3/VRP_3 IO_L01P_3/VRN_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3
R
Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
IO_L23P_3/VREF_3 IO_L24N_3 IO_L24P_3 IO_L27N_3 IO_L27P_3 IO_L34N_3 IO_L34P_3/VREF_3 IO_L35N_3 IO_L35P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/VRP_4 IO_L01P_4/VRN_4 IO_L06N_4/VREF_4 IO_L06P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L25N_4 IO_L25P_4 IO_L27N_4/DIN/D0 IO_L27P_4/D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/D2 IO_L30P_4/D3 IO_L31N_4/INIT_B IO_L31P_4/ DOUT/BUSY
Bank
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
FG320 Pin Number
D18 D16 E16 E17 E18 F15 E15 F14 G14 G18 F17 G15 G16 H13 H14 H16 H15 H17 H18 J18 J17 J15 J14 F16 H12 J12 K15 T17 T16 T18 U18 P16 R16 R17 R18 P18 P17 P15 N15 M14 N14 M15
Type
VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O VREF VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O
Bank
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
FG320 Pin Number
M16 M18 N17 L14 L13 L15 L16 L18 L17 K13 K14 K17 K18 K12 L12 N16 P12 V14 R10 U13 V17 U16 V16 P14 R14 U15 V15 T14 U14 R13 P13 T12 R12 V12 V11 R11 T11 N11 P11 U10 V10
Type
VREF I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO I/O I/O VREF VREF VREF DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O DUAL DUAL I/O I/O I/O I/O DUAL DUAL DUAL DUAL
50
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
IO_L17P_6/VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/VREF_6 IO_L24P_6 IO_L27N_6 IO_L27P_6 IO_L34N_6/VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/VREF_6 VCCO_6 VCCO_6 VCCO_6 IO IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L16N_7 IO_L16P_7/VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7
Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
IO_L32N_4/GCLK1 IO_L32P_4/GCLK0 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO/VREF_5 IO_L01N_5/RDWR_B IO_L01P_5/CS_B IO_L06N_5 IO_L06P_5 IO_L10N_5/VRP_5 IO_L10P_5/VRN_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L27N_5/VREF_5 IO_L27P_5 IO_L28N_5/D6 IO_L28P_5/D7 IO_L29N_5 IO_L29P_5/VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/D4 IO_L31P_5/D5 IO_L32N_5/GCLK3 IO_L32P_5/GCLK2 VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO_L01N_6/VRP_6 IO_L01P_6/VRN_6 IO_L16N_6 IO_L16P_6 IO_L17N_6
Bank
4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6
FG320 Pin Number
N10 P10 M10 M11 T13 U11 N8 P8 U6 R9 V3 V2 T5 T4 V4 U4 R6 R5 V5 U5 P6 P7 R7 T7 V8 V7 R8 T8 U9 V9 N9 P9 M8 M9 T6 U8 K6 T3 T2 U1 T1 R2
Type
GCLK GCLK VCCO VCCO VCCO VCCO I/O I/O I/O VREF DUAL DUAL I/O I/O DCI DCI I/O I/O I/O I/O VREF I/O DUAL DUAL I/O VREF I/O I/O DUAL DUAL GCLK GCLK VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O
Bank
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
FG320 Pin Number
R1 R3 P3 P2 P1 N4 P4 N5 M5 M3 M4 N2 M1 L6 L5 L3 L4 L2 L1 K5 K4 K1 K2 K7 L7 N3 J6 C3 C2 C1 B1 D1 D2 E3 D3 E2 E1 E4 F4 G5 F5 G1
Type
VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O VREF VCCO VCCO VCCO I/O DCI DCI I/O VREF I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
51
Spartan-3 FPGA Family: Pinout Descriptions Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L27N_7 IO_L27P_7/VREF_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
R
Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
Bank
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
FG320 Pin Number
F2 G4 G3 H5 H6 H4 H3 H1 H2 J1 J2 J5 J4 F3 H7 J7 A1 A13 A18 A6 B17 B2 C10 C9 F1 F18 G12 G7 H10 H11 H8 H9 J11 J16 J3 J8 K11 K16 K3 K8 L10 L11
Type
I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Bank
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
FG320 Pin Number
L8 L9 M12 M7 N1 N18 T10 T9 U17 U2 V1 V13 V18 V6 B12 B7 G17 G2 M17 M2 U12 U7 F12 F13 F6 F7 G13 G6 M13 M6 N12 N13 N6
Type
GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
52
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 28: FG320 Package Pinout (Continued) XC3S400 XC3S1000 XC3S1500 Pin Name
VCCINT
User I/Os by Bank
Table 29 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FG320 package. Type
VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
Bank
N/A
FG320 Pin Number
N7 T15 R15 E6 P5 U3 R4 E5 E14 D4 D15 B16
VCCAUX CCLK VCCAUX DONE VCCAUX HSWAP_EN VCCAUX M0 VCCAUX M1 VCCAUX M2 VCCAUX PROG_B VCCAUX TCK VCCAUX TDI VCCAUX TDO VCCAUX TMS
Table 29: User I/Os Per Bank in FG320 Package Maximum I/O 26 26 29 29 27 26 29 29 Maximum LVDS Pairs 11 11 14 14 11 11 14 14 All Possible I/O Pins by Type I/O 19 19 23 23 13 13 23 23 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 3 3 4 4 4 3 4 4 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
53
Spartan-3 FPGA Family: Pinout Descriptions
R
FG320 Footprint
Bank 0
1 A
GND I/O
Bank 1
7
I/O
L30N_0
2
I/O
L01N_0 VRP_0
3
I/O
L01P_0 VRN_0
4
I/O
L15N_0
5
I/O
L15P_0
6
GND
8
I/O
L30P_0
9
I/O
L31P_0 VREF_0
10
I/O
L31N_1 VREF_1
11
I/O
12
I/O
VREF_1
13
GND
14
I/O
L16N_1
15
I/O
L10N_1 VREF_1
16
I/O
L01N_1 VRP_1
17
I/O
L01P_1 VRN_1
18
GND
B
L16P_7 VREF_7
GND I/O
L01P_7 VRN_7
I/O
VREF_0
I/O
L09N_0
I/O
L25N_0
I/O L25P_0
VCCAUX
VCCO_0
I/O
L31N_0
I/O
L31P_1
VCCO_1
VCCAUX
I/O
I/O
L16P_1
I/O
L10P_1
TMS I/O
L01N_2 VRP_2
GND I/O
L01P_2 VRN_2
I/O
L16N_2
C
I/O
L16N_7
I/O
L01N_7 VRP_7
I/O
L09P_0
I/O
L10N_0
VCCO_0
I/O
L27N_0
I/O
L28N_0
GND
GND
I/O
L30N_1
I/O
L28N_1
VCCO_1
I/O
L15N_1
I/O
L15P_1
I/O
L16P_2
D
I/O
L17N_7
I/O
L17P_7
I/O
L19P_7
TDI
I/O
L10P_0
I/O
VREF_0
I/O
L27P_0
I/O
L28P_0
I/O I/O
L32N_0 GCLK7
I/O I/O
L32N_1 GCLK5
I/O
L30P_1
I/O
L28P_1
I/O
L24P_1
I/O
L24N_1
TDO
I/O
L19N_2
I/O
L17N_2
I/O
L17P_2 VREF_2
Bank 7
L20P_7
L20N_7
L21N_7
L29P_1
L27P_1
L27N_1
L21P_2
L19P_2
L20N_2
L20P_2
F
GND
I/O
L23P_7
VCCO_7
I/O
L21P_7
I/O
L22P_7
VCCINT VCCINT
I/O
L29P_0
I/O
L32P_0 GCLK6
I/O
L32P_1 GCLK4
I/O
L29N_1
VCCINT VCCINT
I/O
L22N_2
I/O
L21N_2
VCCO_2
I/O
L23P_2
GND I/O
G
I/O
L23N_7
VCCAUX
I/O
L24P_7
I/O
L24N_7
I/O
L22N_7
VCCINT
GND
VCCO_0 VCCO_0
VCCO_1
VCCO_1
GND
VCCINT
I/O
L22P_2
I/O
L24N_2
I/O
L24P_2
VCCAUX
L23N_2 VREF_2
H
I/O
L35N_7
I/O
L35P_7
I/O
L34P_7
I/O
L34N_7
I/O
L27N_7
I/O
L27P_7 VREF_7 VCCO_7
GND
GND
GND
GND
VCCO_2
I/O
L27N_2
I/O
L27P_2
I/O
L34P_2
I/O
L34N_2 VREF_2
I/O
L35N_2
I/O
L35P_2
J
I/O
L39N_7
I/O
L39P_7
GND
I/O
L40P_7
I/O
L40N_7 VREF_7
I/O I/O
VCCO_7
GND
GND
VCCO_2
I/O
L40P_2 VREF_2
I/O
L40N_2
GND
I/O
L39P_2
I/O
L39N_2
K
I/O
L40N_6
I/O
L40P_6 VREF_6
GND I/O
L34N_6 VREF_6
I/O
L39P_6
I/O
L39N_6
I/O
VCCO_6
GND
GND
VCCO_3
I/O
L39N_3
I/O
L39P_3
I/O I/O GND I/O
L34P_3 VREF_3 L40N_3 VREF_3
I/O
L40P_3
L
I/O
L35P_6
I/O
L35N_6
I/O
L34P_6
I/O
L27P_6
I/O
L27N_6
VCCO_6
GND
GND
GND
GND
VCCO_3
I/O
L27P_3
I/O
L27N_3
I/O
L34N_3
I/O
L35P_3
I/O
L35N_3
M
I/O
L24P_6
VCCAUX
I/O
L23N_6
I/O
L23P_6
I/O
L22P_6
VCCINT
GND
VCCO_5 VCCO_5
VCCO_4
VCCO_4
GND
VCCINT
I/O
L22N_3
I/O
L23N_3
I/O
L23P_3 VREF_3 VCCAUX
I/O
L24N_3
I/O
Bank 6
VCCO_6
L21N_6
L22N_6
L22P_3
L21P_3
L24P_3
P
I/O
L20P_6
I/O
L20N_6
I/O
L19P_6
I/O
L21P_6
I/O
M0 L27N_5 VREF_5
I/O
L27P_5
I/O I/O
L32P_5 GCLK2
I/O
L32P_4 GCLK0
I/O
L30P_4 D3
I/O I/O
L27P_4 D1
I/O
L25P_4
I/O
L06N_4 VREF_4
I/O
L21N_3
I/O
L17N_3
I/O
L20P_3
I/O
L20N_3
I/O
R
L17P_6 VREF_6
I/O
L17N_6
I/O
L19N_6
M2
I/O
L15P_5
I/O
L15N_5
I/O
L28N_5 D6
I/O
L30N_5
I/O
VREF_5
I/O
VREF_4
I/O
L29N_4
I/O
L25N_4
I/O
L06P_4
I/O
DONE L17P_3 VREF_3
I/O
L19N_3
I/O
L19P_3
T
I/O
L16P_6
I/O
L01P_6 VRN_6
I/O
L01N_6 VRP_6
I/O
L06P_5
I/O
L06N_5
I/O
VCCO_5 L28P_5 D7
I/O
L30P_5
GND I/O
GND I/O
L31N_4 INIT_B
I/O
L29P_4
I/O
L27N_4 DIN D0 VCCAUX VCCO_4
I/O
L10N_4
I/O
CCLK L01P_3 VRN_3
I/O
L01N_3 VRP_3
I/O
L16N_3
U
I/O
L16N_6
I/O GND I/O
M1 L10P_5 VRN_5
I/O
L16P_5
I/O
VCCAUX
VCCO_5
L31N_5 D4
VCCO_4
I/O
VREF_4
I/O
L10P_4
I/O
L09N_4
I/O
L01N_4 VRP_4
GND
I/O
L16P_3
I/O
L01N_5 RDWR_B
I/O
L10N_5 VRP_5
V
GND
L01P_5 CS_B
I/O
L16N_5
I/O GND
L29P_5 VREF_5
I/O
L29N_5
I/O
L31P_5 D5
I/O
L31P_4 DOUT BUSY
I/O
L28P_4
I/O
L28N_4
GND
I/O
I/O
L09P_4
I/O
L01P_4 VRN_4
I/O
VREF_4
GND
Bank 5
Bank 4
ds099-3_16_121103
Figure 13: FG320 Package Footprint (top view)
156 16 7 0 I/O: Unrestricted, general-purpose user I/O DCI: User I/O or reference resistor input for bank CONFIG: Dedicated configuration pins N.C.: No unconnected pins in this package 12 8 4 40 DUAL: Configuration pin, then possible user I/O GCLK: User I/O or global clock buffer input JTAG: Dedicated JTAG port pins GND: Ground 29 28 12 8 VREF: User I/O or input voltage reference for bank VCCO: Output voltage supply for bank VCCINT: Internal core voltage supply (+1.2V) VCCAUX: Auxiliary voltage supply (+2.5V)
54
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
Bank 3
N
GND
L24N_6 VREF_6
I/O
I/O
I/O
VCCINT VCCINT
I/O
L32N_4 GCLK1
I/O
L30N_4 D2
I/O
L32N_5 GCLK3
VCCINT VCCINT
I/O
I/O
VCCO_3
I/O
GND
Bank 2
E
I/O
I/O
I/O
L19N_7 VREF_7
I/O
PROG_B HSWAP_ EN
I/O
I/O L29N_0
I/O
I/O
I/O
TCK
I/O
I/O
I/O
I/O
R
Spartan-3 FPGA Family: Pinout Descriptions Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L01P_0/ VRN_0 IO_L06N_0 IO_L06P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 IO_L19N_0 IO_L19P_0 IO_L22N_0 IO_L22P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L27N_0 IO_L27P_0 IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO FG456 Pin Number A4 D5 C5 B5 A5 E6 D6 C6 B6 E7 D7 B7 A7 E8 D8 B8 A8 F9 E9 B9 A9 F10 E10 C10 B10 F11 E11 D11 C11 B11 A11 C8 F8 G9 G10 G11 A12 E16 F12 F13 F16 F17
FG456: 456-lead Fine-pitch Ball Grid Array
The 456-lead fine-pitch ball grid array package, FG456, supports four different Spartan-3 devices, including the XC3S400, the XC3S1000, the XC3S1500, and the XC3S2000. The footprints for the XC3S1000, the XC3S1500, and the XC3S2000 are identical, as shown in Table 30 and Figure 14. The XC3S400, however, has fewer I/O pins which consequently results in 69 unconnected pins on the FG456 package, labeled as "N.C." In Table 30 and Figure 14, these unconnected pins are indicated with a black diamond symbol ( ). All the package pins appear in Table 30 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. If there is a difference between the XC3S400 pinout and the pinout for the XC3S1000, the XC3S1500, or the XC3S2000, then that difference is highlighted in Table 30. If the table entry is shaded grey, then there is an unconnected pin on the XC3S400 that maps to a user-I/O pin on the XC3S1000, XC3S1500, and XC3S2000. If the table entry is shaded tan, then the unconnected pin on the XC3S400 maps to a VREF-type pin on the XC3S1000, the XC3S1500, or the XC3S2000. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S400 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S400 device to an XC3S1000, an XC3S1500, or an XC3S2000 FPGA without changing the printed circuit board. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3S400 Pin Name IO_L01P_0/ VRN_0 IO_L06N_0 IO_L06P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L27N_0 IO_L27P_0 IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO
Type DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF GCLK GCLK VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O
Pinout Table
Table 30: FG456 Package Pinout
3S1000 3S1500 3S2000 Pin Name IO IO IO IO IO/VREF_0 IO/VREF_0 IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 FG456 Pin Number A10 D9 D10 F6 A3 C7 E5 F7 B4
Bank 0 0 0 0 0 0 0 0 0
3S400 Pin Name IO IO IO IO IO/VREF_0 IO/VREF_0 N.C. ( ) IO/VREF_0 IO_L01N_0/ VRP_0
0 Type I/O I/O I/O I/O VREF VREF VREF VREF DCI 0 0 0 0 0 1 1 1 1 1 1
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
55
Spartan-3 FPGA Family: Pinout Descriptions Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO/VREF_1 IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L09N_1 IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L19N_1 IO_L19P_1 IO_L22N_1 IO_L22P_1 IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO FG456 Pin Number E13 F14 C19 B20 A19 B19 C18 D18 A18 B18 D17 E17 B17 C17 C16 D16 A16 B16 D15 E15 B15 A15 D14 E14 A14 B14 C13 D13 A13 B13 D12 E12 B12 C12 C15 F15 G12 G13 G14 C22
R
Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L16N_2 IO_L16P_2 IO_L17N_2 IO_L17P_2/ VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 IO_L28P_2 IO_L29N_2 IO_L29P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 FG456 Pin Number C20 C21 D20 D19 D21 D22 E18 F18 E19 E20 E21 E22 G17 G18 F19 G19 F20 F21 G20 H19 G21 G22 H18 J17 H21 H22 J18 J19 J21 J22 K17 K18 K19 K20 K21 K22 L17 L18 L19 L20 L21
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
3S400 Pin Name IO/VREF_1 N.C. ( ) IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L09N_1 IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO
Type VREF VREF DCI DCI VREF I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O GCLK
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3S400 Pin Name IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L16N_2 IO_L16P_2 IO_L17N_2 IO_L17P_2 /VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2 /VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 N.C. ( ) N.C. ( ) IO_L27N_2 IO_L27P_2 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2
Type DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O
GCLK VCCO VCCO VCCO VCCO VCCO I/O
2 2 2 2 2 2 2
56
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L34P_3/ VREF_3 IO_L35N_3 IO_L35P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L19N_4 IO_L19P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L24N_4 FG456 Pin Number N19 N22 N21 M18 M17 M20 M19 M22 M21 M16 N16 P16 R17 R20 U16 U17 W13 W14 AB13 V18 Y16 AA20 AB20 AA19 AB19 W18 Y18 AA18 AB18 V17 W17 Y17 AA17 V16 W16 AA16 AB16 V15 W15 AA15
Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 IO_L33N_3 IO_L33P_3 IO_L34N_3 FG456 Pin Number L22 H17 H20 J16 K16 L16 Y21 Y20 Y19 W22 Y22 V19 W19 W21 W20 U19 V20 V22 V21 T17 U18 U21 U20 R18 T18 T20 T19 T22 T21 R22 R21 P19 R19 P18 P17 P22 P21 N18 N17 N20
Bank 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3S400 Pin Name IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 N.C. ( ) N.C. ( ) IO_L27N_3 IO_L27P_3 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L34N_3
Type VREF VCCO VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4
3S400 Pin Name IO_L34P_3/ VREF_3 IO_L35N_3 IO_L35P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 N.C. ( ) N.C. ( ) IO_L06N_4/ VREF_4 IO_L06P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L24N_4
Type VREF I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O VREF VREF VREF DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
57
Spartan-3 FPGA Family: Pinout Descriptions Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 FG456 Pin Number AB15 U14 V14 AA14 AB14 U13 V13 Y13 AA13 U12 V12 W12 Y12 AA12 AB12 T12 T13 T14 U15 Y15 U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5 W5 AB5 AA5
R
Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L19N_5 IO_L19P_5/ VREF_5 IO_L22N_5 IO_L22P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 FG456 Pin Number W6 V6 AA6 Y6 Y7 W7 AB7 AA7 W8 V8 AB8 AA8 W9 V9 AB9 AA9 Y10 W10 AB10 AA10 W11 V11 AA11 Y11 T9 T10 T11 U8 Y8 Y1 Y3 Y2 W4 W3 W2 W1
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3S400 Pin Name IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO N.C. ( ) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5
Type I/O I/O I/O DUAL DUAL I/O I/O I/O I/O DUAL DUAL DUAL DUAL GCLK GCLK VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O I/O DCI DCI
Bank 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6
3S400 Pin Name IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6
Type I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O VREF I/O DUAL DUAL I/O VREF I/O I/O DUAL DUAL GCLK GCLK VCCO VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O I/O VREF
58
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L26N_7 IO_L26P_7 IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 FG456 Pin Number C3 C4 D1 C1 E4 D4 D3 D2 F4 E3 E1 E2 G6 F5 F2 F3 H5 G5 G3 G4 G1 G2 H1 H2 J4 H4 J5 J6 J1 J2 K5 K6 K3 K4 K1 K2 L5 L6 L3 L4
Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO FG456 Pin Number V5 U5 V4 V3 V2 V1 T6 T5 U4 T4 U3 U2 T3 R4 T2 T1 R5 P6 R2 R1 P5 P4 P2 P1 N6 N5 N4 N3 N2 N1 M6 M5 M4 M3 M2 M1 M7 N7 P7 R3 R6 C2
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7
3S400 Pin Name IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 N.C. ( ) N.C. ( ) IO_L27N_6 IO_L27P_6 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF VCCO VCCO VCCO VCCO VCCO I/O
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
3S400 Pin Name IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 N.C. ( ) N.C. ( ) IO_L27N_7 IO_L27P_7/ VREF_7 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7
Type DCI DCI I/O VREF I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
59
Spartan-3 FPGA Family: Pinout Descriptions Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG456 Pin Number L1 L2 H3 H6 J7 K7 L7 A1 A22 AA2 AA21 AB1 AB22 B2 B21 C9 C14 J3 J9 J10 J11 J12 J13 J14 J20 K9 K10 K11 K12 K13 K14 L9 L10 L11 L12 L13 L14 M9 M10 M11 M12 M13 M14 N9 N10
R
Table 30: FG456 Package Pinout (Continued)
3S1000 3S1500 3S2000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS FG456 Pin Number N11 N12 N13 N14 P3 P9 P10 P11 P12 P13 P14 P20 Y9 Y14 A6 A17 AB6 AB17 F1 F22 U1 U22 G7 G8 G15 G16 H7 H16 R7 R16 T7 T8 T15 T16 AA22 AB21 B3 AB2 AA1 AB3 A2 A21 B1 B22 A20
Bank 7 7 7 7 7 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 60
3S400 Pin Name IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Type VREF I/O VCCO VCCO VCCO VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
3S400 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
VCCAUX CCLK VCCAUX DONE VCCAUX HSWAP_EN VCCAUX M0 VCCAUX M1 VCCAUX M2 VCCAUX PROG_B VCCAUX TCK VCCAUX TDI VCCAUX TDO VCCAUX TMS
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions able user-I/O pins are distributed between the eight I/O banks for the XC3S1000, XC3S1500, and XC3S2000 in the FG456 package.
User I/Os by Bank
Table 31 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S400 in the FG456 package. Similarly, Table 32 shows how the avail-
Table 31: User I/Os Per Bank for XC3S400 in FG456 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 35 35 31 31 35 35 31 31 All Possible I/O Pins by Type I/O 27 27 25 25 21 21 25 25 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 4 4 4 4 4 4 4 4 GCLK 2 2 0 0 2 2 0 0
Edge Top
Right
Bottom
Left
Table 32: User I/Os Per Bank for XC3S1000, XC3S1500, and XC3S2000 in FG456 Package Maximum I/O 40 40 43 43 41 40 43 43 All Possible I/O Pins by Type I/O 31 31 37 37 26 25 37 37 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 5 5 4 4 5 5 4 4 GCLK 2 2 0 0 2 2 0 0
Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
61
Spartan-3 FPGA Family: Pinout Descriptions
R
FG456 Footprint
Left Half of Package (top view)
XC3S400 (264 max. user I/O) I/O: Unrestricted, 196 general-purpose user I/O
1 A
GND
2
3
4
5
6
Bank 0 7
8
9
10
I/O
11
I/O L32P_0 GCLK6 I/O
I/O I/O IO I/O I/O I/O L19P_0 PROG_B VREF_0 L01P_0 L09P_0 VCCAUX L24P_0 L27P_0 VRN_0 I/O I/O GND
B
TDI
HSWAP_ I/O I/O I/O I/O I/O L19N_0 L01N_0 L32N_0 EN L09N_0 L15P_0 L24N_0 L27N_0 L29P_0
VRP_0
GCLK7
32
VREF: User I/O or input voltage reference for bank N.C.: Unconnected pins for XC3S400 ( )
I/O C L16P_7 VREF_7
I/O
I/O I/O IO I/O I/O L01N_7 L01P_7 VREF_0 VCCO_0 VRP_7 VRN_7 L06P_0 L15N_0 I/O I/O
GND
I/O I/O L31P_0 L29N_0 VREF_0 I/O I/O L31N_0
I/O I/O I/O I/O I/O I/O D L16N_7 L19P_7 L19N_7 L17P_7 L06N_0 L10P_0 L16P_0 L22P_0 VREF_7 IO I/O
I/O
69
I/O I/O I/O I/O I/O I/O I/O I/O I/O E L21N_7 L21P_7 L20P_7 L17N_7 VREF_0 L10N_0 L16N_0 L22N_0 L25P_0 L28P_0 L30P_0
Bank 7
XC3S1000, XC3S1500, XC3S2000 (333 max user I/O) I/O: Unrestricted, 261 general-purpose user I/O
F
VCCAUX
I/O I/O I/O I/O L23N_7 L23P_7 L20N_7 L22P_7 I/O I/O I/O
I/O
IO I/O I/O I/O VREF_0 VCCO_0 L25N_0 L28N_0 L30N_0
I/O I/O I/O G L27N_7 L27P_7 L26N_7 L26P_7 L24P_7 L22N_7 VCCINT VCCINT VREF_7 I/O I/O I/O
VCCO_7 L29P_7
VCCO_0 VCCO_0 VCCO_0
36
VREF: User I/O or input voltage reference for bank N.C.: No unconnected pins in this package
H L28N_7 L28P_7
I/O I/O
I/O VCCO_7 VCCINT L24N_7
0
J L32N_7 L32P_7
GND
I/O I/O I/O L29N_7 L31N_7 L31P_7 VCCO_7 I/O I/O
GND
GND
GND
All devices DUAL: Configuration pin, 12 then possible user I/O
I/O I/O I/O I/O K L35N_7 L35P_7 L34N_7 L34P_7 L33N_7 L33P_7 I/O I/O I/O I/O I/O L L40N_7 L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 VREF_7 I/O I/O I/O I/O I/O M L40P_6 L40N_6 L39P_6 L39N_6 L38P_6 L38N_6 VREF_6 I/O I/O I/O N L35P_6 L35N_6 L34P_6 L34N_6 L33P_6 L33N_6 VREF_6 I/O I/O GND I/O I/O I/O I/O I/O
VCCO_7
GND
GND
GND
VCCO_7
GND
GND
GND
8
GCLK: User I/O or global clock buffer input
VCCO_6
GND
GND
GND
DCI: User I/O or reference 16 resistor input for bank
VCCO_6
GND
GND
GND
7
CONFIG: Dedicated configuration pins JTAG: Dedicated JTAG port pins
P L32P_6 L32N_6
I/O I/O
I/O I/O I/O L31P_6 L31N_6 L28P_6 VCCO_6 I/O I/O
GND
GND
GND
4
R L29P_6 L29N_6 Bank 6
VCCO_6 L26P_6 L28N_6 VCCO_6 VCCINT
12
VCCINT: Internal core voltage supply (+1.2V) VCCO: Output voltage supply for bank VCCAUX: Auxiliary voltage supply (+2.5V)
I/O I/O I/O I/O I/O T L27P_6 L27N_6 L26N_6 L23P_6 L22P_6 L22N_6 VCCINT VCCINT VCCO_5
I/O
VCCO_5 VCCO_5
40
U
VCCAUX
I/O IO I/O I/O I/O L24N_6 L24P_6 VREF_6 L23N_6 L19P_6 VREF_5
I/O
VCCO_5
I/O
I/O
I/O I/O L31P_5 D5 I/O
8
I/O I/O I/O I/O I/O I/O V L21P_6 L21N_6 L20P_6 L20N_6 L19N_6 L15P_5 I/O
I/O I/O
I/O I/O L24P_5 L27P_5 I/O
I/O I/O
52 GND: Ground
I/O I/O I/O I/O I/O L19P_5 I/O W L17P_6 L17N_6 L16P_6 L16N_6 L09P_5 L15N_5 VREF_5 L24N_5 L27N_5 L29P_5 L31N_5 VREF_6 VREF_5 VREF_5 D4
Y A A A B
I/O
I/O I/O I/O I/O I/O I/O L19N_5 VCCO_5 L01P_6 L01N_6 L01N_5 L09N_5 L16P_5 VRN_6 VRP_6 RDWR_B GND
GND
I/O I/O L32P_5 L29N_5 GCLK2
M1
I/O I/O I/O I/O I/O I/O I/O I/O I/O L22P_5 L01P_5 L10P_5 L28P_5 L32N_5 L06P_5 VRN_5 L16N_5 L25P_5 L30P_5 GCLK3 CS_B D7 M2 I/O I/O I/O IO I/O I/O I/O L28N_5 L10N_5 VCCAUX L22N_5 VREF_5 L25N_5 L06N_5 VRP_5 D6 L30N_5
GND
M0
Bank 5
DS099-4_11a_030203
Figure 14: FG456 Package Footprint (top view)
62
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
12
I/O
13
14
Bank 1 15 16
17
18
19
20
TMS
21
TCK
22
GND
I/O I/O I/O I/O I/O I/O L22N_1 VCCAUX L10N_1 L06N_1 L30N_1 L28N_1 L25P_1 VREF_1 VREF_1
A
Right Half of Package (top view)
I/O I/O I/O I/O I/O I/O I/O I/O I/O L22P_1 L32N_1 L01P_1 L16N_1 L10P_1 L06P_1 VRN_1 GCLK5 L30P_1 L28P_1 L25N_1 I/O I/O L32P_1 GCLK4 L29N_1 I/O GND
VCCO_1 L19N_1
GND
TDO
B
I/O I/O I/O I/O I/O L01N_1 L01N_2 L01P_2 L16P_1 L09N_1 VRP_1 VRP_2 VRN_2
I/O
C
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L19P_1 L31N_1 L17P_2 D L29P_1 L27N_1 L24N_1 L15N_1 L09P_1 L16P_2 L16N_2 L17N_2 VREF_2 VREF_1 IO I/O I/O I/O L31P_1 VREF_1 L27P_1 L24P_1 I/O I/O IO VREF_1 VCCO_1 I/O I/O I/O I/O I/O I/O I/O E L15P_1 L19N_2 L20N_2 L20P_2 L21N_2 L21P_2 I/O I/O I/O I/O I/O VCCAUX F L23N_2 L19P_2 VREF_2 L24N_2 L24P_2
I/O
VCCO_1 VCCO_1 VCCO_1 VCCINT VCCINT
I/O I/O I/O I/O I/O I/O L26N_2 G L22N_2 L22P_2 L23P_2 L27N_2 L27P_2
I/O I/O I/O I/O VCCINT VCCO_2 L28N_2 L26P_2 VCCO_2 L29N_2 L29P_2 H I/O GND G ND GND
VCCO_2 L28P_2
I/O I/O L31N_2 L31P_2 I/O
GND
I/O I/O L32N_2 L32P_2 J
I/O GND G ND GND
VCCO_2 L33N_2 L33P_2 L34N_2
I/O I/O I/O I/O K VREF_2 L34P_2 L35N_2 L35P_2
GND
G ND
GND
VCCO_2
I/O I/O I/O I/O I/O I/O L40P_2 L L38N_2 L38P_2 L39N_2 L39P_2 L40N_2 VREF_2 I/O I/O I/O I/O I/O I/O L40N_3 M L38P_3 L38N_3 L39P_3 L39N_3 L40P_3 VREF_3 I/O I/O I/O I/O I/O I/O N VREF_3 L34N_3 L35P_3 L35N_3 I/O GND I/O I/O L32P_3 L32N_3 P
GND
G ND
GND
VCCO_3
GND
G ND
GND
VCCO_3 L33P_3 L33N_3 L34P_3
I/O GND G ND GND
I/O
VCCO_3 L31P_3 L31N_3 L29N_3
VCCINT VCCO_3
I/O I/O I/O I/O L29P_3 VCCO_3 L28P_3 L28N_3 R L24N_3
VCCO_4 VCCO_4 VCCO_4 VCCINT VCCINT
I/O I/O I/O I/O I/O I/O L26P_3 L26N_3 T L22N_3 L24P_3 L27P_3 L27N_3
I/O I/O I/O I/O I/O I/O I/O VCCO_4 VCCAUX U I/O I/O L30N_4 L23P_3 L28N_4 L25N_4 L22P_3 L20N_3 VREF_3 L23N_3 D2 I/O I/O IO L22N_4 I/O I/O I/O I/O I/O I/O I/O I/O V L30P_4 L28P_4 L25P_4 VREF_4 L16N_4 L10N_4 VREF_4 L17N_3 L20P_3 L21P_3 L21N_3 D3 I/O I/O I/O L22P_4 I/O I/O L31N_4 L16P_4 INIT_B I/O IO I/O L31P_4 GND VCCO_4 VREF_4 DOUT L29N_4 BUSY I/O I/O I/O I/O I/O L27N_4 L19N_4 L32N_4 L29P_4 DI N L24N_4 GCLK1 D0 I/O I/O I/O IO I/O L19P_4 L32P_4 VREF_4 L27P_4 L24P_4 GCLK0 D1 I/O I/O I/O I/O I/O I/O W L06N_4 L17P_3 L10P_4 VREF_4 VREF_3 L19P_3 L19N_3 L16N_3 I/O I/O I/O I/O L01P_3 L01N_3 L15N_4 L06P_4 VRN_3 VRP_3 I/O I/O I/O I/O L05N_4 L01N_4 L15P_4 L09N_4 VRP_4
VCCAUX
I/O
I/O Y L16P_3 CCLK
GND
A A A B
I/O I/O I/O L05P_4 L01P_4 DONE L09P_4 VRN_4
GND
Bank 4
DS099-4_11b_030503
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
Bank 3
Bank 2
63
Spartan-3 FPGA Family: Pinout Descriptions
R
FG676: 676-lead Fine-pitch Ball Grid Array
The 676-lead fine-pitch ball grid array package, FG676, supports four different Spartan-3 devices, including the XC3S1000, the XC3S1500, the XC3S2000, and the XC3S4000. All four have nearly identical footprints but are slightly different due to unconnected pins on the XC3S1000 and XC3S1500. For example, because the XC3S1000 has fewer I/O pins, this device has 98 unconnected pins on the FG676 package, labeled as "N.C." In Table 33 and Figure 15, these unconnected pins are indicated with a black diamond symbol ( ). The XC3S1500, however, has only two unconnected pins, also labeled "N.C." in the pinout table but indicated with a black square symbol ( ). All the package pins appear in Table 33 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. If there is a difference between the XC3S1000, the XC3S1500, the XC3S2000, and the XC3S4000 pinouts, then that difference is highlighted in Table 33. If the table entry is shaded grey, then there is an unconnected pin on either the XC3S1000 or XC3S1500 that maps to a user-I/O pin on the XC3S2000 and XC3S4000. If the table entry is shaded tan, then the unconnected pin on either the XC3S1000 or XC3S1500 maps to a VREF-type pin on the XC3S2000 and XC3S4000. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S1000 or XC3S1500 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S1000 through to the XC3S4000 FPGA without changing the printed circuit board. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO/VREF_0 IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L05N_0 IO_L05P_0/ VREF_0 IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) XC3S1500 Pin Name IO/VREF_0 IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L05N_0 IO_L05P_0/ VREF_0 IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L11N_0 IO_L11P_0 IO_L12N_0 IO_L12P_0 IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 IO_L17N_0 IO_L17P_0 IO_L18N_0 IO_L18P_0 IO_L19N_0 IO_L19P_0 IO_L22N_0 IO_L22P_0 IO_L23N_0 IO_L23P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L26N_0 IO_L26P_0/ VREF_0 IO_L27N_0 IO_L27P_0 XC3S2000 XC3S4000 Pin Name IO/VREF_0 IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L05N_0 IO_L05P_0/ VREF_0 IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L11N_0 IO_L11P_0 IO_L12N_0 IO_L12P_0 IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 IO_L17N_0 IO_L17P_0 IO_L18N_0 IO_L18P_0 IO_L19N_0 IO_L19P_0 IO_L22N_0 IO_L22P_0 IO_L23N_0 IO_L23P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L26N_0 IO_L26P_0/ VREF_0 IO_L27N_0 IO_L27P_0 FG676 Pin Number B3 F7 G10 E5 D5 B4 A4 C5 B5 E6 D6 C6 B6 E7 D7 B7 A7 G8 F8 E8 D8 B8 A8 G9 F9 E9 D9 C9 B9 F10 E10 D10 C10 B10 A10 G11 F11 E11 D11 B11 A11 G12 H13
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type VREF VREF VREF DCI DCI I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O
IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) )
IO_L19N_0 IO_L19P_0 IO_L22N_0 IO_L22P_0 N.C. ( N.C. ( ) )
Pinout Table
Table 33: FG676 Package Pinout
XC3S1000 Pin Name IO IO IO IO N.C. ( IO IO IO IO ) XC3S1500 Pin Name IO IO IO IO IO IO IO IO IO XC3S2000 XC3S4000 Pin Name IO IO IO IO IO IO IO IO IO FG676 Pin Number A3 A5 A6 C4 C8 C12 E13 H11 H12
0 0 0 0 Type I/O I/O I/O I/O I/O I/O I/O I/O I/O 0 0 0 0 0 0 0 0 0
Bank 0 0 0 0 0 0 0 0 0
IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 N.C. ( N.C. ( ) )
IO_L27N_0 IO_L27P_0
64
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) XC3S1500 Pin Name IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L11N_1 IO_L11P_1 IO_L12N_1 IO_L12P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L18N_1 IO_L18P_1 IO_L19N_1 IO_L19P_1 IO_L22N_1 IO_L22P_1 IO_L23N_1 IO_L23P_1 IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 IO_L26N_1 IO_L26P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 XC3S2000 XC3S4000 Pin Name IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L11N_1 IO_L11P_1 IO_L12N_1 IO_L12P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L18N_1 IO_L18P_1 IO_L19N_1 IO_L19P_1 IO_L22N_1 IO_L22P_1 IO_L23N_1 IO_L23P_1 IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 IO_L26N_1 IO_L26P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 FG676 Pin Number E20 A20 B20 E19 F19 C19 D19 A19 B19 F18 G18 B18 C18 F17 G17 D17 E17 A17 B17 G16 H16 E16 F16 A16 B16 G15 H15 E15 F15 A15 B15 G14 H14 D14 E14 B14 C14 C16 C20 H17 H18 J14 J15
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO IO IO/VREF_1 IO/VREF_1 N.C. ( ) XC3S1500 Pin Name IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO IO IO/VREF_1 IO/VREF_1 IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1 XC3S2000 XC3S4000 Pin Name IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO IO IO/VREF_1 IO/VREF_1 IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1 FG676 Pin Number F12 E12 B12 A12 G13 F13 D13 C13 B13 A13 C7 C11 H9 H10 J11 J12 J13 K13 A14 A22 A23 D16 E18 F14 F20 G19 C15 C17 D18 D22 E22 B23 C23 E21 F21 B22 C22 C21 D21 A21 B21 D20
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O I/O I/O I/O I/O I/O I/O VREF GCLK GCLK VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O I/O I/O VREF VREF VREF DCI DCI I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O GCLK GCLK VCCO VCCO VCCO VCCO VCCO VCCO
IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 N.C. ( N.C. ( ) )
IO_L19N_1 IO_L19P_1 IO_L22N_1 IO_L22P_1 N.C. ( N.C. ( ) )
IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 N.C. ( N.C. ( ) )
IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1
IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
65
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name VCCO_1 VCCO_1 N.C. ( ) XC3S1500 Pin Name VCCO_1 VCCO_1 N.C. ( ) IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 IO_L03P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 IO_L08N_2 IO_L08P_2 IO_L09N_2/ VREF_2 IO_L09P_2 IO_L10N_2 IO_L10P_2 IO_L14N_2 IO_L14P_2 IO_L16N_2 IO_L16P_2 IO_L17N_2 IO_L17P_2/ VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 XC3S2000 XC3S4000 Pin Name VCCO_1 VCCO_1 IO IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 IO_L03P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 IO_L08N_2 IO_L08P_2 IO_L09N_2/ VREF_2 IO_L09P_2 IO_L10N_2 IO_L10P_2 IO_L14N_2 (IO_L11N_2)1 IO_L14P_2 (IO_L11P_2)1 IO_L16N_2 (IO_L12N_2)1 IO_L16P_2 (IO_L12P_2)1 IO_L17N_2 (IO_L13N_2)1 IO_L17P_2 (IO_L13P_2)1/ VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 FG676 Pin Number J16 K14 F22 C25 C26 E23 E24 D25 D26 E25 E26 G20 G21 F23 F24 G22 G23 F25 F26 G25 G26 H20 H21 H22 J21 H23 H24
R
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 IO_L28P_2 IO_L29N_2 IO_L29P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 N.C. ( N.C. ( N.C. ( ) ) ) XC3S1500 Pin Name IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 IO_L28P_2 IO_L29N_2 IO_L29P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 IO_L05N_3 IO_L05P_3 IO_L06N_3 XC3S2000 XC3S4000 Pin Name IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 IO_L28P_2 IO_L29N_2 IO_L29P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 IO_L05N_3 IO_L05P_3 IO_L06N_3 FG676 Pin Number K24 K25 K26 L19 L20 L21 L22 L25 L26 M19 M20 M21 M22 L23 M24 M25 M26 N19 N20 N21 N22 N23 N24 N25 N26 G24 J19 K19 L18 L24 M18 N17 N18 AA22 AA21 AB24 AB23 AC26 AC25 Y21 Y20 AB26
Bank 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Type VCCO VCCO I/O DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO DCI DCI VREF I/O I/O I/O I/O I/O I/O
IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 IO_L03P_2 N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) ) ) ) ) ) ) ) )
IO_L14N_2 IO_L14P_2 IO_L16N_2 IO_L16P_2 IO_L17N_2 IO_L17P_2/ VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2
I/O I/O I/O VREF
2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2
H25 H26 J20 K20 J22 J23 J24 J25 K21 K22 K23
I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O
3 3 3 3 3 3 3 3 3
66
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L35N_3 IO_L35P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO N.C. ( IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 ) XC3S1500 Pin Name IO_L35N_3 IO_L35P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 XC3S2000 XC3S4000 Pin Name IO_L35N_3 IO_L35P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 FG676 Pin Number P20 P19 P22 P21 P24 P23 P26 P25 P17 P18 R18 T18 T24 U19 V19 Y24 AA20 AD15 AD19 AD23 AF21 AF22 W15 W16 AB14 AD25 Y17 AB22 AC22 AE24 AF24 AE23 AF23 AD22 AE22 AB21 AC21 AD21 AE21 AB20 AC20 AE20 AF20
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) ) ) ) ) ) XC3S1500 Pin Name IO_L06P_3 IO_L07N_3 IO_L07P_3 IO_L08N_3 IO_L08P_3 IO_L09N_3 IO_L09P_3/ VREF_3 IO_L10N_3 IO_L10P_3 IO_L14N_3 IO_L14P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3 XC3S2000 XC3S4000 Pin Name IO_L06P_3 IO_L07N_3 IO_L07P_3 IO_L08N_3 IO_L08P_3 IO_L09N_3 IO_L09P_3/ VREF_3 IO_L10N_3 IO_L10P_3 IO_L14N_3 IO_L14P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3 FG676 Pin Number AB25 AA24 AA23 Y23 Y22 AA26 AA25 W21 W20 Y26 Y25 V21 W22 W24 W23 W26 W25 U20 V20 V23 V22 V25 V24 U22 U21 U24 U23 U26 U25 T20 T19 T22 T21 T26 T25 R20 R19 R22 R21 R24 T23 R26 R25
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Type I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O I/O I/O VREF VREF VREF DCI DCI I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O
IO_L14N_3 IO_L14P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
67
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) XC3S1500 Pin Name IO_L11N_4 IO_L11P_4 IO_L12N_4 IO_L12P_4 IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L17N_4 IO_L17P_4 IO_L18N_4 IO_L18P_4 IO_L19N_4 IO_L19P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L23N_4 IO_L23P_4 IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L26N_4 IO_L26P_4/ VREF_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B XC3S2000 XC3S4000 Pin Name IO_L11N_4 IO_L11P_4 IO_L12N_4 IO_L12P_4 IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L17N_4 IO_L17P_4 IO_L18N_4 IO_L18P_4 IO_L19N_4 IO_L19P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L23N_4 IO_L23P_4 IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L26N_4 IO_L26P_4/ VREF_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B FG676 Pin Number Y19 AA19 AB19 AC19 AE19 AF19 Y18 AA18 AB18 AC18 AD18 AE18 AC17 AA17 AD17 AB17 AE17 AF17 Y16 AA16 AB16 AC16 AE16 AF16 Y15 W14 AA15 AB15 AE15 AF15 Y14 AA14 AC14 AD14 AE14 AF14 AD16 AD20 U14
R
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO N.C. ( IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) ) XC3S1500 Pin Name VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L11N_5/ VREF_5 IO_L11P_5 IO_L12N_5 IO_L12P_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L18N_5 IO_L18P_5 XC3S2000 XC3S4000 Pin Name VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L11N_5/ VREF_5 IO_L11P_5 IO_L12N_5 IO_L12P_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L18N_5 IO_L18P_5 FG676 Pin Number V14 V15 V16 W17 W18 AA7 AA13 AB9 AC9 AC11 AD10 AD12 AF4 Y8 AF5 AF13 AC5 AB5 AE4 AD4 AB6 AA6 AE5 AD5 AD6 AC6 AF6 AE6 AC7 AB7 AF7 AE7 AB8 AA8 AD8 AC8 AF8 AE8 AA9 Y9 AE9 AD9
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF DUAL DUAL I/O I/O I/O I/O DUAL DUAL DUAL DUAL GCLK GCLK VCCO VCCO VCCO
Bank 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Type VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O
IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) )
IO_L19N_4 IO_L19P_4 IO_L22N_4/ VREF_4 IO_L22P_4 N.C. ( N.C. ( ) )
IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 N.C. ( N.C. ( ) )
IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B
IO_L31P_4/ IO_L31P_4/ IO_L31P_4/ DOUT/BUSY DOUT/BUSY DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 VCCO_4 IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 VCCO_4 IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 VCCO_4 VCCO_4 VCCO_4
IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 N.C. ( N.C. ( ) )
68
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L03P_6 N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) ) ) ) ) ) ) ) ) XC3S1500 Pin Name IO_L03P_6 IO_L05N_6 IO_L05P_6 IO_L06N_6 IO_L06P_6 IO_L07N_6 IO_L07P_6 IO_L08N_6 IO_L08P_6 IO_L09N_6/ VREF_6 IO_L09P_6 IO_L10N_6 IO_L10P_6 IO_L14N_6 IO_L14P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 XC3S2000 XC3S4000 Pin Name IO_L03P_6 IO_L05N_6 IO_L05P_6 IO_L06N_6 IO_L06P_6 IO_L07N_6 IO_L07P_6 IO_L08N_6 IO_L08P_6 IO_L09N_6/ VREF_6 IO_L09P_6 IO_L10N_6 IO_L10P_6 IO_L14N_6 IO_L14P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 FG676 Pin Number AC1 AB2 AB1 Y7 Y6 AA4 AA3 Y5 Y4 AA2 AA1 Y2 Y1 W7 W6 V6 W5 W4 W3 W2 W1 V7 U7 V5 V4 V3 V2 U6 U5 U4 U3 U2 U1 T8 T7 T6 T5 T2 T1 R8 R7 R6 R5 T4
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L19N_5 IO_L19P_5/ VREF_5 IO_L22N_5 IO_L22P_5 N.C. ( N.C. ( ) ) XC3S1500 Pin Name IO_L19N_5 IO_L19P_5/ VREF_5 IO_L22N_5 IO_L22P_5 IO_L23N_5 IO_L23P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L26N_5 IO_L26P_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 N.C. ( ) IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6 XC3S2000 XC3S4000 Pin Name IO_L19N_5 IO_L19P_5/ VREF_5 IO_L22N_5 IO_L22P_5 IO_L23N_5 IO_L23P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L26N_5 IO_L26P_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6 FG676 Pin Number AA10 Y10 AC10 AB10 AF10 AE10 Y11 W11 AB11 AA11 AF11 AE11 Y12 W12 AB12 AA12 AF12 AE12 Y13 W13 AC13 AB13 AE13 AD13 AD7 AD11 U13 V11 V12 V13 W9 W10 AA5 AD2 AD1 AB4 AB3 AC2
Bank 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6
Type I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O DUAL DUAL I/O VREF
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 N.C. ( N.C. ( ) )
IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 N.C. ( )
IO_L14N_6 IO_L14P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6
I/O I/O DUAL DUAL GCLK GCLK VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O VREF
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
69
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( N.C. ( ) ) ) ) ) ) ) ) ) ) ) ) XC3S1500 Pin Name IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L10N_7 IO_L10P_7/ VREF_7 IO_L14N_7 IO_L14P_7 IO_L16N_7 IO_L16P_7/ VREF_7 XC3S2000 XC3S4000 Pin Name IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L10N_7 IO_L10P_7/ VREF_7 IO_L14N_7 IO_L14P_7 IO_L16N_7 IO_L16P_7/ VREF_7 FG676 Pin Number R3 R2 R1 P8 P7 P6 P5 P4 P3 P2 P1 P9 P10 R9 T3 T9 U8 V8 Y3 F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1 F2 H6 H7 G1 G2 J6 H5
R
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L26N_7 IO_L26P_7 IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 XC3S1500 Pin Name IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L26N_7 IO_L26P_7 IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 XC3S2000 XC3S4000 Pin Name IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L26N_7 IO_L26P_7 IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 IO_L40P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 FG676 Pin Number H3 H4 H1 H2 K7 J7 J4 J5 J2 J3 K5 K6 K3 K4 K1 K2 L7 L8 L5 L6 L1 L2 M7 M8 M6 M5 M3 L4 M1 M2 N7 N8 N5 N6 N3 N4 N1 N2 G3 J8 K8 L3 L9 M9
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O VREF
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO VCCO VCCO VCCO VCCO
IO_L14N_7 IO_L14P_7 IO_L16N_7 IO_L16P_7/ VREF_7
70
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX XC3S1500 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX XC3S2000 XC3S4000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX FG676 Pin Number N13 N14 N15 N16 P11 P12 P13 P14 P15 P16 R4 R10 R11 R12 R13 R14 R15 R16 R17 R23 T10 T11 T12 T13 T14 T15 T16 T17 U11 U12 U15 U16 A2 A9 A18 A25 AE1 AE26 AF2 AF9 AF18 AF25 B1 B26 J1 J26
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S1500 Pin Name VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S2000 XC3S4000 Pin Name VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG676 Pin Number N9 N10 A1 A26 AC4 AC12 AC15 AC23 AD3 AD24 AE2 AE25 AF1 AF26 B2 B25 C3 C24 D4 D12 D15 D23 K11 K12 K15 K16 L10 L11 L12 L13 L14 L15 L16 L17 M4 M10 M11 M12 M13 M14 M15 M16 M17 M23 N11 N12
Bank 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
71
Spartan-3 FPGA Family: Pinout Descriptions Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT XC3S1500 Pin Name VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CCLK DONE XC3S2000 XC3S4000 Pin Name VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CCLK DONE FG676 Pin Number V1 V26 H8 H19 J9 J10 J17 J18 K9 K10 K17 K18 U9 U10 U17 U18 V9 V10 V17 V18 W8 W19 AD26 AC24
R
Table 33: FG676 Package Pinout (Continued)
XC3S1000 Pin Name XC3S1500 Pin Name HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS XC3S2000 XC3S4000 Pin Name HSWAP_EN M0 M1 M2 PROG_B TCK TDI TDO TMS FG676 Pin Number C2 AE3 AC3 AF3 D3 B24 C1 D24 A24
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CONFIG CONFIG
Bank
Type CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG JTAG JTAG
VCC HSWAP_EN AUX VCC M0 AUX VCC M1 AUX VCC M2 AUX VCC PROG_B AUX VCC TCK AUX VCC TDI AUX VCC TDO AUX VCC TMS AUX
Notes: 1. XC3S4000 is pin compatible but uses alternate differential pairs on six package balls.
User I/Os by Bank
Table 34 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S1000 in the FG676 package. Similarly, Table 35 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S1500 in the FG676 package. Finally, Table 36 shows the same information for the XC3S2000 and XC3S4000 in the FG676 package.
VCC CCLK AUX VCC DONE AUX
Table 34: User I/Os Per Bank for XC3S1000 in FG676 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 49 50 48 48 50 50 48 48 All Possible I/O Pins by Type I/O 40 41 41 41 35 35 41 41 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 5 5 5 5 5 5 5 5 GCLK 2 2 0 0 2 2 0 0
Edge Top
Right
Bottom
Left
72
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 35: User I/Os Per Bank for XC3S1500 in FG676 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 62 61 60 60 63 61 60 60 All Possible I/O Pins by Type I/O 52 51 52 52 47 45 52 52 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 6 6 6 6 6 6 6 6 GCLK 2 2 0 0 2 2 0 0
Edge Top
Right
Bottom
Left
Table 36: User I/Os Per Bank for XC3S2000 and XC3S4000 in FG676 Package Maximum I/O 62 61 61 60 63 61 61 60 All Possible I/O Pins by Type I/O 52 51 53 52 47 45 53 52 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 6 6 6 6 6 6 6 6 GCLK 2 2 0 0 2 2 0 0
Edge Top
I/O Bank 0 1 2 3 4 5 6 7
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
73
Spartan-3 FPGA Family: Pinout Descriptions
R
FG676 Footprint
Left Half of Package (top view)
XC3S1000 (391 max. user I/O) I/O: Unrestricted, 315 general-purpose user I/O
1 A B C D E F
GND
2
VCCAUX
3
I/O
4
I/O L05P_0 VREF_0 I/O L05N_0
5
I/O
6
I/O
7
I/O L10P_0 I/O L10N_0
Bank 0 8
I/O L15P_0 I/O L15N_0 I/O
9
10
11
I/O L26P _0 VREF _0 I/O L26N_0
12
I/O L29P_0 I/O L29N_0
13
I/O L32P_0 GCLK6 I/O L32N_0 GCLK7 I/O L31P_0 VREF_0 I/O L31N_0
I/O VCCAUX L23P_0 I/O L18P_0 I/O L18N_0 I/O L17P_0 I/O L17N_0 I/O L23N_0
VCCAUX
GND
I/O VREF_0
I/O L06P_0 I/O L06N_0 I/O L01P_0 VRN_0 I/O L01N_0 VRP_0 I/O L01N_7 VRP_7 I/O L08P_7
I/O L08P_0 I/O L08N_0 I/O L07P_0 I/O L07N_0 I/O L01P_7 VRN_7 I/O L05N_7 I/O L10N_7
TD I
HSWAP_ EN
GND
I/O
VCCO_0
I/O L22P_0 I/O L22N_0 I/O L19P_0 I/O L19N_0 I/O VREF_0
VCCO_0
I/O
40 voltage reference for bank
N.C.: Unconnected pins for 98 XC3S1000 ( ) XC3S1500 (487 max user I/O) I/O: Unrestricted, 403 general-purpose user I/O
VREF: User I/O or input
I/O L03N_7 VREF_7 I/O L06N_7 I/O L09N_7
I/O L03P_7 I/O L06P_7 I/O L09P_7
PROG_B
GND
I/O L09P_0 I/O L09N_0 I/O VREF_0 I/O L05P_7
I/O L12P_0 I/O L12N_0 I/O L11P_0 I/O L11N_0
I/O L25P_0 I/O L25N_0 I/O L24P_0 I/O L24N_0
GND
I/O L02N_7 I/O L07N_7
I/O L02P_7 I/O L07P_7 I/O L08N_7
I/O L28P_0 I/O L28N_0 I/O L27N_0
I/O
I/O L16P_0 I/O L16N_0
I/O L30P_0 I/O L30N_0 I/O L27P_0
G Bank 7 H J K L M N P R
I/O L14N_7 I/O L19N_7 VREF_7 VCCAUX
I/O L14P_7 I/O L19P_7 I/O L22N_7 I/O L26P_7 I/O L29P_7 I/O L34P_7 I/O L40P_7 I/O L40N_6 I/O L34N_6 VREF_6 I/O L29N_6 I/O L26N_6 I/O L22P_6 I/O L19N_6 I/O L10N_6 I/O L09N_6 VREF _6 I/O L05N_6
VCCO_7
I/O L17N_7 I/O L22P_7 I/O L24N_7
I/O L17P_7 I/O L21N_7 I/O L24P_7 I/O L33P_7
48 voltage reference for bank 2
N.C.: Unconnected pins for XC3S1500 ( )
VREF: User I/O or input
I/O L16P_7 VREF_7 I/O L21P_7 I/O L23N_7 I/O L28N_7 I/O L32P_7 I/O L38N_7 I/O L38P_6 I/O L32P_6 I/O L28P_6 I/O L23P_6 I/O L21N_6 I/O L16P_6 I/O L08N_6
I/O L10P _7 VREF _7 VCCINT
VCCO_0 VCCO_0
I/O
I/O
I/O L16N_7 I/O L23P_7 I/O L28P_7 I/O L32N_7 I/O L38P_7 I/O L38N_6 I/O L32N_6 I/O L28N_6 I/O L23N_6 I/O L16N_6 I/O L14P_6 I/O L06P_6
I/O L20P_7 I/O L20N_7 I/O L27N_7 I/O L31N_7 I/O L35N_7 I/O L35P_6 I/O L31P_6 I/O L27P_6 I/O L20P_6 I/O L20N_6
VCCO_7 VCCINT
VCCINT
VCCO_0 VCCO_0 VCCO_0
I/O L26N_7 I/O L29N_7 I/O L34N_7 I/O L40N_7 VREF_7 I/O L40P_6 VREF_6 I/O L34P_6 I/O L29P_6 I/O L26P_6
VCCO_7 VCCINT
VCCINT
GND
GND
VCCO_0
XC3S2000, XC3S4000 (489 max user I/O) I/O: Unrestricted, 405 general-purpose user I/O
VCCO_7
I/O L27P_7 VREF_7 I/O L31P_7 I/O L35P_7 I/O L35N_6 I/O L31N_6 I/O L27N_6
VCCO_7
GND
GND
GND
GND
I/O L33N_7 I/O L39N_7 I/O L39P_6 I/O L33P_6
GND
VCCO_7
GND
GND
GND
GND
48 voltage reference for bank 0
N.C.: No unconnected pins
VREF: User I/O or input
I/O L39P_7 I/O L39N_6
VCCO_7 VCCO_7
GND
GND
GND
VCCO_6 VCCO_6
GND
GND
GND
GND
VCCO_6
GND
GND
GND
GND
All devices DUAL: Configuration pin, 12 then possible user I/O
T U V Bank 6 W Y A A A B A C A D A E A F
VCCO_6
I/O L33N_6 I/O L24N_6 VREF_6 I/O L21P_6 I/O L17N_6 I/O L08P_6 I/O L07N_6
VCCO_6
GND
GND
GND
GND
8
GCLK: User I/O or global clock buffer input
I/O L24P_6 I/O L22N_6 I/O L17P_6 VREF_6 VCCO_6 I/O L07P_6
VCCO_6 VCCINT
VCCINT
GND
GND
VCCO_5
DCI: User I/O or reference 16 resistor input for bank
VCCAUX
VCCO_6 VCCINT
VCCINT
VCCO_5 VCCO_5 VCCO_5
I/O L19P_6 I/O L10P_6 I/O L09P_6 I/O L05P_6
I/O VCCINT L14N_6 I/O L06N_6
VCCO_5 VCCO_5
I/O L24P_5 I/O L24N_5 I/O L25P_5 I/O L25N_5
I/O L27P_5 I/O L27N_5 VREF_5 I/O L28P_5 D7 I/O L28N_5 D6 GND
I/O L30P_5 I/O L30N_5
7 4
CONFIG: Dedicated configuration pins JTAG: Dedicated JTAG port pins VCCINT: Internal core
I/O I/O L11P_5 I/O L11N_5 VREF _5 I/O L12P_5 I/O L12N_5
I/O L16P_5 I/O L16N_5
I/O L19P_5 VREF_5 I/O L19N_5 I/O L22P_5 I/O L22N_5
I/O
I/O L05P_5 I/O L05N_5 I/O L07P_5 I/O L07N_5 I/O L08P_5 I/O L08N_5
I/O
I/O
20 voltage supply (+1.2V)
VCCO: Output voltage 64 supply for bank VCCAUX: Auxiliary voltage 16 supply (+2.5V)
I/O L02P_6
I/O L02N_6
I/O L01P_5 CS_B I/O L01N_5 RDWR_B I/O L06P_5 I/O L06N_5 I/O VREF_5
I/O L09P_5 I/O L09N_5
I/O
I/O L31P_5 D5 I/O L31N_5 D4 I/O L32P_5 GCLK2 I/O L32N_5 GCLK3 I/O VREF_5
I/O L03P_6 I/O L01P_6 VRN_6 VCCAUX
I/O L03N_6 VREF_6 I/O L01N_6 VRP_6 GND
M1
GND
I/O
I/O
GND
I/O L04P_5 I/O L04N_5
VCCO_5
I/O L18P_5 I/O L18N_5
I/O I/O L23P_5 I/O L23N_5
VCCO_5 I/O L26P_5 I/O L26N_5
I/O
M0
76
GND: Ground
I/O L10P_5 VRN_5 I/O L10N_5 VRP_5
I/O L15P_5
I/O L29P_5 VREF_5 I/O L29N_5
GND
VCCAUX
M2
I/O
I/O VCCAUX L15N_5
Bank 5
DS099-4_12a_030203
Figure 15: FG676 Package Footprint (top view)
74
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
14
I/O
15
I/O L29N_1 I/O L29P_1 I/O VREF_1
16
I/O L26N_1 I/O L26P_1
17
Bank 1 18 19
I/O L15N_1 I/O L15P_1 I/O L12N_1 I/O L12P_1 I/O L11N_1 I/O L11P_1
20
I/O L10N_1 VREF_1 I/O L10P_1
21
I/O L08N_1 I/O L08P_1 I/O L07N_1 I/O L07P_1 I/O L05N_1 I/O L05P_1 I/O L06P_2
22
I/O
23
I/O
24
TMS
25
VCCAUX
26
GND
I/O L23N_1 VCCAUX I/O L23P_1 I/O L18N_1 I/O L18P_1 I/O VREF_1
A B C D E F G Bank 2 H J K L M N P R T U Bank 3 V W Y A A A B A C A D A E A F
Right Half of Package (top view)
I/O L32N_1 GCLK5 I/O L32P_1 GCLK4 I/O L31N_1 VREF_1 I/O L31P_1
I/O L06N_1 VREF_1 I/O L06P_1 I/O L01N_1 VRP_1 I/O L01P_1 VRN_1 I/O
I/O L04N_1 I/O L04P_1
TCK
GND
VCCAUX
VCCO_1
I/O VREF_1 I/O L22N_1 I/O L22P_1
VCCO_1
GND
I/O L01N_2 VRP_2 I/O L03N_2 VREF_2 I/O L05N_2 I/O L09N_2 VREF _2 I/O L10N_2
I/O L01P_2 VRN_2 I/O L03P_2 I/O L05P_2 I/O L09P_2 I/O L10P_2
GND
I/O
I/O L09N_1 I/O L09P_1
GND
TDO
I/O L28N_1 I/O L28P_1 I/O L27N_1 I/O L27P_1
I/O L25N_1 I/O L25P_1 I/O L24N_1 I/O L24P_1
I/O
I/O L02N_2 I/O L07N_2 I/O L08P_2
I/O L02P_2 I/O L07P_2
I/O
I/O L19N_1 I/O L19P_1
I/O L16N_1 I/O L16P_1
I/O I/O L06N_2
I/O L30N_1 I/O L30P_1
I/O
I/O L08N_2
VCCO_2
VCCO_1 VCCO_1 VCCINT
I/O I/O I/O I/O I/O L17P_2 L14N_2 L14P_2 L16N_2 L17N_2 (L13P_2) (L11N_2) (L11P_2) (L12N_2) (L13N_2) VREF_2 I/O L20N_2 I/O L20P_2 I/O L27P_2 I/O L31P_2 I/O L35P_2 I/O L35N_3 I/O L31N_3 I/O L27N_3 I/O L20N_3 I/O L20P_3 I/O L10P_3 I/O L05P_3 I/O L16P_2 (L12P_2) I/O L23N_2 VREF_2 I/O L28N_2 I/O L32N_2 I/O L38N_2 I/O L38P_3 I/O L32P_3 I/O L28P_3 I/O L23P_3 VREF_3 I/O L16N_3 I/O L10N_3 I/O L05N_3 I/O L21N_2 I/O L23P_2 I/O L28P_2 I/O L32P_2 I/O L38P_2 I/O L38N_3 I/O L32N_3 I/O L28N_3 I/O L23N_3 I/O L21P_3 I/O L16P_3 I/O L08P_3 I/O L21P_2 I/O L24N_2 I/O L33N_2 I/O L22N_2 I/O L24P_2
I/O L19N_2 I/O L22P_2 I/O L26N_2 I/O L29N_2 I/O L34N_2 VREF_2 I/O L40N_2 I/O L40P_3 I/O L34P_3 VREF_3 I/O L29P_3 I/O L26P_3 I/O L22N_3 I/O L19P_3 I/O L14P_3 I/O L09P _3 VREF _3 I/O L06P_3
I/O L19P_2
VCCO_1 VCCO_1 VCCO_1 VCCINT
VCCINT
VCCO_2
VCCAUX
VCCO_1
GND
GND
VCCINT
VCCINT
VCCO_2
I/O L26P_2 I/O L29P_2 I/O L34P_2 I/O L40P_2 VREF_2 I/O L40N_3 VREF_3 I/O L34N_3 I/O L29N_3 I/O L26N_3
Notes: 1. Differential pair assignments shown in parentheses on balls H20, H21, H22, H23, H24, and J21 are for XC3S4000 only.
GND
GND
GND
GND
VCCO_2
I/O L27N_2 I/O L31N_2 I/O L35N_2 I/O L35P_3 I/O L31P_3 I/O L27P_3
VCCO_2
GND
GND
GND
GND
VCCO_2
GND
I/O L33P_2 I/O L39P_2 I/O L39N_3 I/O L33N_3
GND
GND
GND
VCCO_2 VCCO_2
I/O L39N_2 I/O L39P_3
GND
GND
GND
VCCO_3 VCCO_3
GND
GND
GND
GND
VCCO_3
GND
GND
GND
GND
GND
VCCO_3
I/O L33P_3 I/O L24P_3 I/O L21N_3 I/O L17P_3 VREF_3 I/O L08N_3 I/O L07P_3
VCCO_3
VCCO_4
GND
GND
VCCINT
VCCINT
VCCO_3
I/O L24N_3 I/O L22P_3 I/O L17N_3
VCCO_4 VCCO_4 VCCO_4 VCCINT
VCCINT
VCCO_3
VCCAUX
I/O L27P_4 D1 I/O L30N_4 D2 I/O L30P_4 D3 IO VREF_4 I/O L31N_4 INIT_B I/O L31P_4 DOUT BUSY I/O L32N_4 GCLK1 I/O L32P_4 GCLK0
I/O I/O L27N_4 DIN D0 I/O L28N_4 I/O L28P_4
I/O
VCCO_4 VCCO_4 VCCINT I/O L11N_4 I/O L11P_4 I/O L12N_4 I/O L12P_4
I/O L19N_3 I/O L14N_3 I/O L09N_3 I/O L06N_3
I/O L24N_4 I/O L24P_4 I/O L25N_4 I/O L25P_4
I/O VREF_4 I/O L19P_4 I/O L22P_4 I/O L19N_4 I/O L22N_4 VREF_4 I/O L23N_4 I/O L23P_4
I/O L16N_4 I/O L16P_4 I/O L17N_4 I/O L17P_4 I/O L18N_4 I/O L18P_4
VCCO_3 I/O L07N_3
I/O
I/O L01P_3 VRN_3 I/O L07N_4 I/O L07P_4 I/O L08N_4 I/O L08P_4
I/O L01N_3 VRP_3 I/O L01N_4 VRP_4 I/O L01P_4 VRN_4 I/O L06N_4 VREF_4 I/O L06P_4
I/O L09N_4 I/O L09P_4
I/O L02P_3
I/O L02N_3 VREF_3 DONE
GND
GND
I/O L03P_3 I/O VREF_4
I/O L03N_3
I/O
VCCO_4 I/O L26N_4 I/O L26P _4 VREF _4
I/O
VCCO_4
I/O
GND
CCLK
I/O L29N_4 I/O L29P_4
I/O L15N_4 I/O L15P_4
I/O L10N_4 I/O L10P_4
I/O L05N_4 I/O L05P_4
I/O L04N_4 I/O L04P_4
GND
VCCAUX
VCCAUX
I/O
I/O
VCCAUX
GND
Bank 4
DS099-4_12b_011205
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
75
Spartan-3 FPGA Family: Pinout Descriptions
R
FG900: 900-lead Fine-pitch Ball Grid Array
The 900-lead fine-pitch ball grid array package, FG900, supports three different Spartan-3 devices, including the XC3S2000, the XC3S4000, and the XC3S5000. The footprints for the XC3S4000 and XC3S5000 are identical, as shown in Table 37 and Figure 16. The XC3S2000, however, has fewer I/O pins which consequently results in 68 unconnected pins on the FG900 package, labeled as "N.C." In Table 37 and Figure 16, these unconnected pins are indicated with a black diamond symbol ( ). All the package pins appear in Table 37 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. If there is a difference between the XC3S2000 pinout and the pinout for the XC3S4000 and XC3S5000, then that difference is highlighted in Table 37. If the table entry is shaded, then there is an unconnected pin on the XC3S2000 that maps to a user-I/O pin on the XC3S4000 and XC3S5000. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L11N_0 IO_L11P_0 IO_L12N_0 IO_L12P_0 IO_L13N_0 IO_L13P_0 IO_L14N_0 IO_L14P_0 IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 IO_L17N_0 IO_L17P_0 IO_L18N_0 IO_L18P_0 IO_L19N_0 IO_L19P_0 IO_L20N_0 IO_L20P_0 IO_L21N_0 IO_L21P_0 IO_L22N_0 IO_L22P_0 IO_L23N_0 IO_L23P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L26N_0 IO_L26P_0/ VREF_0 IO_L27N_0 IO_L27P_0 XC3S4000 XC3S5000 Pin Name IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L11N_0 IO_L11P_0 IO_L12N_0 IO_L12P_0 IO_L13N_0 IO_L13P_0 IO_L14N_0 IO_L14P_0 IO_L15N_0 IO_L15P_0 IO_L16N_0 IO_L16P_0 IO_L17N_0 IO_L17P_0 IO_L18N_0 IO_L18P_0 IO_L19N_0 IO_L19P_0 IO_L20N_0 IO_L20P_0 IO_L21N_0 IO_L21P_0 IO_L22N_0 IO_L22P_0 IO_L23N_0 IO_L23P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L26N_0 IO_L26P_0/ VREF_0 IO_L27N_0 IO_L27P_0 FG900 Pin Number D7 C7 F8 E8 D8 C8 B8 A8 J9 H9 G10 F10 C10 B10 J10 K11 H11 G11 F11 E11 D11 C11 B11 A11 K12 J12 H12 G12 F12 E12 D12 C12 B12 A12 J13 H13 F13 E13 B13 A13 K14 J14 G14 F14
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O
Pinout Table
Table 37: FG900 Package Pinout
XC3S2000 Pin Name IO IO IO IO IO IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L02N_0 IO_L02P_0 IO_L03N_0 IO_L03P_0 IO_L04N_0 IO_L04P_0 IO_L05N_0 IO_L05P_0/ VREF_0 XC3S4000 XC3S5000 Pin Name IO IO IO IO IO IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L02N_0 IO_L02P_0 IO_L03N_0 IO_L03P_0 IO_L04N_0 IO_L04P_0 IO_L05N_0 IO_L05P_0/ VREF_0 FG900 Pin Number E15 K15 D13 K13 G8 F9 C4 B4 A4 B5 A5 D5 E6 C6 B6 F6 F7
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type I/O I/O I/O I/O I/O VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O VREF
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
76
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1 IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L11N_1 IO_L11P_1 IO_L12N_1 IO_L12P_1 IO_L13N_1 IO_L13P_1 IO_L14N_1 IO_L14P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L17N_1/ VREF_1 IO_L17P_1 IO_L18N_1 IO_L18P_1 IO_L19N_1 IO_L19P_1 IO_L20N_1 IO_L20P_1 IO_L21N_1 IO_L21P_1 IO_L22N_1 IO_L22P_1 IO_L23N_1 IO_L23P_1 IO_L24N_1 IO_L24P_1 XC3S4000 XC3S5000 Pin Name IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1 IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L11N_1 IO_L11P_1 IO_L12N_1 IO_L12P_1 IO_L13N_1 IO_L13P_1 IO_L14N_1 IO_L14P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L17N_1/ VREF_1 IO_L17P_1 IO_L18N_1 IO_L18P_1 IO_L19N_1 IO_L19P_1 IO_L20N_1 IO_L20P_1 IO_L21N_1 IO_L21P_1 IO_L22N_1 IO_L22P_1 IO_L23N_1 IO_L23P_1 IO_L24N_1 IO_L24P_1 FG900 Pin Number B25 C25 F24 F25 C24 D24 A24 B24 H23 G24 F23 G23 C23 D23 A23 B23 H22 J22 F22 E23 D22 E22 A22 B22 F21 G21 B21 C21 G20 H20 E20 F20 C20 D20 A20 B20 J19 K19 G19 H19 E19 F19
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L02N_1 IO_L02P_1 IO_L03N_1 IO_L03P_1 XC3S4000 XC3S5000 Pin Name IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 IO_L35N_0 IO_L35P_0 IO_L36N_0 IO_L36P_0 IO_L37N_0 IO_L37P_0 IO_L38N_0 IO_L38P_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L02N_1 IO_L02P_1 IO_L03N_1 IO_L03P_1 FG900 Pin Number C14 B14 J15 H15 G15 F15 D15 C15 B15 A15 B7 A7 G7 H8 E9 D9 B9 A9 C5 E7 C9 G9 J11 L12 C13 G13 L13 L14 E25 J21 K20 F18 F16 A16 J17 A27 B27 D26 C27 A26 B26
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O I/O I/O I/O I/O I/O I/O VREF GCLK GCLK I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O VREF DCI DCI I/O I/O I/O I/O
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
77
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L25N_1 IO_L25P_1 IO_L26N_1 IO_L26P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 XC3S4000 XC3S5000 Pin Name IO_L25N_1 IO_L25P_1 IO_L26N_1 IO_L26P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 IO_L37N_1 IO_L37P_1 IO_L38N_1 IO_L38P_1 IO_L39N_1 IO_L39P_1 IO_L40N_1 IO_L40P_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 FG900 Pin Number C19 D19 A19 B19 F17 G17 B17 C17 J16 K16 G16 H16 D16 E16 B16 C16 H18 J18 D18 E18 A18 B18 K17 K18 L17 C18 G18 L18 L19 J20 C22 G22 E24 C26 J25 C29 C30 D27 D28 D29
R
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 IO_L08N_2 IO_L08P_2 IO_L09N_2/ VREF_2 IO_L09P_2 IO_L10N_2 IO_L10P_2 IO_L12N_2 IO_L12P_2 IO_L13N_2 IO_L13P_2/ VREF_2 IO_L14N_2 IO_L14P_2 IO_L15N_2 IO_L15P_2 IO_L16N_2 IO_L16P_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 XC3S4000 XC3S5000 Pin Name IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 IO_L08N_2 IO_L08P_2 IO_L09N_2/ VREF_2 IO_L09P_2 IO_L10N_2 IO_L10P_2 IO_L12N_2 IO_L12P_2 IO_L13N_2 IO_L13P_2/ VREF_2 IO_L14N_2 IO_L14P_2 IO_L15N_2 IO_L15P_2 IO_L16N_2 IO_L16P_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 FG900 Pin Number D30 E29 E30 F28 F29 G27 G28 G29 G30 G25 H24 H25 H26 H27 H28 H29 H30 J26 J27 J29 J30 J23 K22 K24 K25 L25 L26 L27 L28 L29 L30 M22 M23 M24 M25 M27 M28 M21 N21 N22 N23 M26
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O
I/O GCLK GCLK I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O VREF
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
78
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 IO_L04N_3 IO_L04P_3 IO_L05N_3 IO_L05P_3 IO_L06N_3 IO_L06P_3 IO_L07N_3 IO_L07P_3 IO_L08N_3 IO_L08P_3 IO_L09N_3 IO_L09P_3/ VREF_3 IO_L10N_3 IO_L10P_3 IO_L11N_3 IO_L11P_3 IO_L13N_3/ VREF_3 IO_L13P_3 IO_L14N_3 IO_L14P_3 IO_L15N_3 IO_L15P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 XC3S4000 XC3S5000 Pin Name IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 IO_L04N_3 IO_L04P_3 IO_L05N_3 IO_L05P_3 IO_L06N_3 IO_L06P_3 IO_L07N_3 IO_L07P_3 IO_L08N_3 IO_L08P_3 IO_L09N_3 IO_L09P_3/ VREF_3 IO_L10N_3 IO_L10P_3 IO_L11N_3 IO_L11P_3 IO_L13N_3/ VREF_3 IO_L13P_3 IO_L14N_3 IO_L14P_3 IO_L15N_3 IO_L15P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 FG900 Pin Number AH30 AH29 AG28 AG27 AG30 AG29 AF30 AF29 AE26 AF27 AE29 AE28 AD28 AD27 AD30 AD29 AC24 AD25 AC26 AC25 AC28 AC27 AC30 AC29 AB27 AB26 AB30 AB29 AA22 AB23 AA25 AA24 AA29 AA28 Y21 AA21 Y24 Y23 Y26 Y25
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L28P_2 IO_L29N_2 IO_L29P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L37N_2 IO_L37P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO XC3S4000 XC3S5000 Pin Name IO_L28P_2 IO_L29N_2 IO_L29P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L37N_2 IO_L37P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 IO_L41N_2 IO_L41P_2 IO_L45N_2 IO_L45P_2 IO_L46N_2 IO_L46P_2 IO_L47N_2 IO_L47P_2 IO_L50N_2 IO_L50P_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO FG900 Pin Number N25 N26 N27 N29 N30 P21 P22 P24 P25 P28 P29 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 E27 F26 K28 K29 K21 L21 L23 L24 M29 M30 M20 N20 P20 L22 J24 N24 G26 E28 J28 N28 AB25
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Type DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
79
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3 IO_L35N_3 IO_L35P_3 IO_L37N_3 IO_L37P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_3 VCCO_3 VCCO_3 VCCO_3 XC3S4000 XC3S5000 Pin Name IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3 IO_L35N_3 IO_L35P_3 IO_L37N_3 IO_L37P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 IO_L46N_3 IO_L46P_3 IO_L47N_3 IO_L47P_3 IO_L48N_3 IO_L48P_3 IO_L50N_3 IO_L50P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 FG900 Pin Number Y28 Y27 Y30 Y29 W30 W29 V21 W21 V23 V22 V25 W26 V30 V29 U22 U21 U25 U24 U29 U28 T22 T21 T24 T23 T26 T25 T28 T27 T30 T29 W23 W22 W25 W24 W28 W27 V27 V26 U20 V20 W20 Y22
R
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L02N_4 IO_L02P_4 IO_L03N_4 IO_L03P_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L11N_4 IO_L11P_4 IO_L12N_4 IO_L12P_4 IO_L13N_4 IO_L13P_4 IO_L14N_4 IO_L14P_4 XC3S4000 XC3S5000 Pin Name VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L02N_4 IO_L02P_4 IO_L03N_4 IO_L03P_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L11N_4 IO_L11P_4 IO_L12N_4 IO_L12P_4 IO_L13N_4 IO_L13P_4 IO_L14N_4 IO_L14P_4 FG900 Pin Number V24 AB24 AD26 V28 AB28 AF28 AA16 AG18 AA18 AE22 AD23 AH27 AF16 AK28 AJ27 AK27 AJ26 AK26 AG26 AF25 AD24 AC23 AE23 AF23 AG23 AH23 AJ23 AK23 AB22 AC22 AF22 AG22 AJ22 AK22 AD21 AE21 AH21 AJ21 AB21 AA20 AC20 AD20
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Type I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO
Bank 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
80
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L02N_5 IO_L02P_5 IO_L03N_5 IO_L03P_5 IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 IO_L09N_5 IO_L09P_5 XC3S4000 XC3S5000 Pin Name IO_L33P_4 IO_L34N_4 IO_L34P_4 IO_L35N_4 IO_L35P_4 IO_L38N_4 IO_L38P_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L02N_5 IO_L02P_5 IO_L03N_5 IO_L03P_5 IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 IO_L09N_5 IO_L09P_5 FG900 Pin Number AJ25 AE25 AE24 AG24 AH24 AJ24 AK24 Y17 Y18 AD18 AH18 Y19 AB20 AD22 AH22 AF24 AH26 AE6 AB10 AA11 AA15 AE15 AH4 AK15 AK4 AJ4 AK5 AJ5 AF6 AG5 AJ6 AH6 AE7 AD7 AH7 AG7 AK8 AJ8 AC9 AB9 AG9 AF9
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L17N_4 IO_L17P_4 IO_L18N_4 IO_L18P_4 IO_L19N_4 IO_L19P_4 IO_L20N_4 IO_L20P_4 IO_L21N_4 IO_L21P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L23N_4 IO_L23P_4 IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L26N_4 IO_L26P_4/ VREF_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 N.C. ( ) XC3S4000 XC3S5000 Pin Name IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L17N_4 IO_L17P_4 IO_L18N_4 IO_L18P_4 IO_L19N_4 IO_L19P_4 IO_L20N_4 IO_L20P_4 IO_L21N_4 IO_L21P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L23N_4 IO_L23P_4 IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L26N_4 IO_L26P_4/ VREF_4 IO_L27N_4/ DIN/D0 IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 IO_L33N_4 FG900 Pin Number AE20 AF20 AG20 AH20 AJ20 AK20 AA19 AB19 AC19 AD19 AE19 AF19 AG19 AH19 AJ19 AK19 AB18 AC18 AE18 AF18 AJ18 AK18 AA17 AB17 AD17 AE17 AH17 AJ17 AB16 AC16 AD16 AE16 AG16 AH16 AJ16 AK16 AH25
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF DUAL DUAL I/O I/O I/O I/O DUAL DUAL DUAL DUAL GCLK GCLK I/O
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Type I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
81
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L11N_5/ VREF_5 IO_L11P_5 IO_L12N_5 IO_L12P_5 IO_L13N_5 IO_L13P_5 IO_L14N_5 IO_L14P_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L17N_5 IO_L17P_5 IO_L18N_5 IO_L18P_5 IO_L19N_5 IO_L19P_5/ VREF_5 IO_L20N_5 IO_L20P_5 IO_L21N_5 IO_L21P_5 IO_L22N_5 IO_L22P_5 IO_L23N_5 IO_L23P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L26N_5 IO_L26P_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 XC3S4000 XC3S5000 Pin Name IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L11N_5/ VREF_5 IO_L11P_5 IO_L12N_5 IO_L12P_5 IO_L13N_5 IO_L13P_5 IO_L14N_5 IO_L14P_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L17N_5 IO_L17P_5 IO_L18N_5 IO_L18P_5 IO_L19N_5 IO_L19P_5/ VREF_5 IO_L20N_5 IO_L20P_5 IO_L21N_5 IO_L21P_5 IO_L22N_5 IO_L22P_5 IO_L23N_5 IO_L23P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L26N_5 IO_L26P_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 FG900 Pin Number AK9 AJ9 AE10 AE9 AJ10 AH10 AD11 AD10 AF11 AE11 AH11 AG11 AK11 AJ11 AB12 AC11 AD12 AC12 AF12 AE12 AH12 AG12 AK12 AJ12 AA13 AA12 AC13 AB13 AG13 AF13 AK13 AJ13 AB14 AA14 AE14 AE13 AJ14 AH14 AC15
R
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6 IO_L03P_6 IO_L04N_6 IO_L04P_6 IO_L05N_6 IO_L05P_6 IO_L06N_6 IO_L06P_6 XC3S4000 XC3S5000 Pin Name IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 IO_L35N_5 IO_L35P_5 IO_L36N_5 IO_L36P_5 IO_L37N_5 IO_L37P_5 IO_L38N_5 IO_L38P_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6 IO_L03P_6 IO_L04N_6 IO_L04P_6 IO_L05N_6 IO_L05P_6 IO_L06N_6 IO_L06P_6 FG900 Pin Number AB15 AD15 AD14 AG15 AF15 AJ15 AH15 AK7 AJ7 AD8 AC8 AF8 AE8 AH8 AG8 AH5 AF7 AD9 AH9 AB11 Y12 Y13 AD13 AH13 Y14 AB6 AH2 AH1 AG4 AG3 AG2 AG1 AF2 AF1 AF4 AE5 AE3 AE2
Bank 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Type DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O DUAL DUAL I/O
Bank 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6
Type VREF I/O I/O DUAL DUAL GCLK GCLK I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O
82
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 N.C. ( ) N.C. ( ) IO_L37N_6 IO_L37P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 XC3S4000 XC3S5000 Pin Name IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 IO_L36N_6 IO_L36P_6 IO_L37N_6 IO_L37P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 IO_L45N_6 IO_L45P_6 IO_L52N_6 IO_L52P_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 FG900 Pin Number W5 V6 V5 V4 V2 V1 U10 U9 U7 U6 U3 U2 T10 T9 T6 T5 T4 T3 T2 T1 Y4 Y3 T8 T7 V3 AB3 AF3 AD5 V7 AB7 Y9 U11 V11 W11 J6 C1 C2 D3 D4 D1 D2
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L07N_6 IO_L07P_6 IO_L08N_6 IO_L08P_6 IO_L09N_6/ VREF_6 IO_L09P_6 IO_L10N_6 IO_L10P_6 IO_L11N_6 IO_L11P_6 IO_L13N_6 IO_L13P_6/ VREF_6 IO_L14N_6 IO_L14P_6 IO_L15N_6 IO_L15P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L24N_6/ VREF_6 IO_L24P_6 N.C. ( ) N.C. ( ) IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 N.C. ( ) N.C. ( ) XC3S4000 XC3S5000 Pin Name IO_L07N_6 IO_L07P_6 IO_L08N_6 IO_L08P_6 IO_L09N_6/ VREF_6 IO_L09P_6 IO_L10N_6 IO_L10P_6 IO_L11N_6 IO_L11P_6 IO_L13N_6 IO_L13P_6/ VREF_6 IO_L14N_6 IO_L14P_6 IO_L15N_6 IO_L15P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L25N_6 IO_L25P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L30N_6 IO_L30P_6 FG900 Pin Number AD4 AD3 AD2 AD1 AD6 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AB5 AB4 AB2 AB1 AB8 AA9 AA7 AA6 AA3 AA2 AA10 Y10 Y8 Y7 Y6 Y5 Y2 Y1 W9 W8 W7 W6 W4 W3 W2 W1 W10 V10 V9 V8
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Type I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O VREF
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Type I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O DCI DCI I/O I/O VREF I/O
I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
83
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L04N_7 IO_L04P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L10N_7 IO_L10P_7/ VREF_7 IO_L11N_7 IO_L11P_7 IO_L13N_7 IO_L13P_7 IO_L14N_7 IO_L14P_7 IO_L15N_7 IO_L15P_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 N.C. ( ) N.C. ( ) IO_L26N_7 IO_L26P_7 XC3S4000 XC3S5000 Pin Name IO_L04N_7 IO_L04P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L10N_7 IO_L10P_7/ VREF_7 IO_L11N_7 IO_L11P_7 IO_L13N_7 IO_L13P_7 IO_L14N_7 IO_L14P_7 IO_L15N_7 IO_L15P_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L25N_7 IO_L25P_7 IO_L26N_7 IO_L26P_7 FG900 Pin Number E1 E2 F5 E4 F2 F3 G3 G4 G1 G2 H7 G6 H5 H6 H3 H4 H1 H2 J4 J5 J1 J2 K9 J8 K6 K7 K2 K3 L10 K10 L7 L8 L5 L6 L3 L4 L1 L2 M6 M7 M3 M4
R
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L37N_7 IO_L37P_7/ VREF_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 IO_L40P_7 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 GND GND XC3S4000 XC3S5000 Pin Name IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L37N_7 IO_L37P_7/ VREF_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 IO_L40P_7 IO_L46N_7 IO_L46P_7 IO_L49N_7 IO_L49P_7 IO_L50N_7 IO_L50P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 GND GND FG900 Pin Number M1 M2 N10 M10 N8 N9 N1 N2 P9 P10 P6 P7 P2 P3 R9 R10 R7 R8 R5 R6 R3 R4 R1 R2 M8 M9 N6 M5 N4 N5 E3 J3 N3 G5 J7 N7 L9 M11 N11 P11 A1 B1
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 N/A N/A
Type I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO GND GND
84
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S4000 XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG900 Pin Number V14 AC14 AF14 AK14 M15 N15 P15 R15 T15 U15 V15 W15 M16 N16 P16 R16 T16 U16 V16 W16 A17 E17 H17 N17 P17 R17 T17 U17 V17 AC17 AF17 AK17 N18 P18 R18 T18 U18 V18 R19 T19 A21 E21 H21 AC21 AF21
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S4000 XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG900 Pin Number F1 K1 P1 U1 AA1 AE1 AJ1 AK1 A2 B2 AJ2 E5 K5 P5 U5 AA5 AF5 A6 AK6 K8 P8 U8 AA8 A10 E10 H10 AC10 AF10 AK10 R12 T12 N13 P13 R13 T13 U13 V13 A14 E14 H14 N14 P14 R14 T14 U14
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
85
Spartan-3 FPGA Family: Pinout Descriptions Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX XC3S4000 XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX FG900 Pin Number AK21 K23 P23 U23 AA23 A25 AK25 E26 K26 P26 U26 AA26 AF26 A29 B29 AJ29 AK29 A30 B30 F30 K30 P30 U30 AA30 AE30 AJ30 AK30 AK2 F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17 AG17 D21 AG21 D25
R
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT XC3S4000 XC3S5000 Pin Name VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CCLK DONE HSWAP_EN M0 M1 M2 FG900 Pin Number AG25 F27 K27 P27 U27 AA27 AE27 L11 R11 T11 Y11 M12 N12 P12 U12 V12 W12 M13 W13 M14 W14 L15 Y15 L16 Y16 M17 W17 M18 W18 M19 N19 P19 U19 V19 W19 L20 R20 T20 Y20 AH28 AJ28 A3 AJ3 AH3 AK3
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG
VCCAUX CCLK VCCAUX DONE VCCAUX HSWAP_EN VCCAUX M0 VCCAUX M1 VCCAUX M2
86
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
Table 37: FG900 Package Pinout (Continued)
XC3S2000 Pin Name XC3S4000 XC3S5000 Pin Name PROG_B TCK TDI TDO TMS FG900 Pin Number B3 B28 C3 C28 A28
User I/Os by Bank
Type CONFIG JTAG JTAG JTAG JTAG
Bank
VCCAUX PROG_B VCCAUX TCK VCCAUX TDI VCCAUX TDO VCCAUX TMS
Table 38 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S2000 in the FG900 package. Similarly, Table 39 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 and XC3S5000 in the FG900 package.
Table 38: User I/Os Per Bank for XC3S2000 in FG900 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 71 71 69 71 72 71 69 71 All Possible I/O Pins by Type I/O 62 62 61 62 57 55 60 62 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 5 5 6 7 5 6 7 7 GCLK 2 2 0 0 2 2 0 0
Edge Top
Right
Bottom
Left
Table 39: User I/Os Per Bank for XC3S4000 and XC3S5000 in FG900 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 79 79 79 79 80 79 79 79 All Possible I/O Pins by Type I/O 70 70 71 70 65 63 70 70 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 5 5 6 7 5 6 7 7 GCLK 2 2 0 0 2 2 0 0
Edge Top
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
87
Spartan-3 FPGA Family: Pinout Descriptions
R
FG900 Footprint
1 2
GND
3
4
5
6
GND
7
I/O L35P_0
8
Bank 0 9 10
GND
11
12
13
14
GND
15
I/O L32P_0 GCLK6
Left Half of Package (top view)
XC3S2000 (565 max. user I/O) I/O: Unrestricted, 481 general-purpose user I/O
A B C D E F G H Bank 7 J K L
GND
I/O HSWAP_ I/O L01P_0 EN VRN_0 L02P_0
I/O I/O L38P_0 L09P_0
I/O I/O I/O L17P_0 L22P_0 L25P_0
GND
GND
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L35N_0 L38N_0 PROG_B L01N_0 L32N_0 L09N_0 L12P_0 L17N_0 L22N_0 L25N_0 L28P_0 VRP_0 L02N_0 L04P_0 GCLK7 TDI I/O IO I/O I/O I/O I/O I/O I/O I/O VCCO_0 VCCO_0 VCCO_0 L31P_0 VREF_0 L04N_0 L06P_0 L08P_0 L12N_0 L16P_0 L21P_0 L28N_0 VREF_0 I/O VCCAUX I/O L31N_0 I/O
I/O I/O L01N_7 L01P_7 VRP_7 VRN_7
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L37P_0 VCCAUX VCCAUX L03N_7 L06N_0 L08N_0 L16N_0 L21N_0 VREF_7 L03P_7 L02N_7 L02P_7 L03N_0 I/O I/O I/O VCCO_7 L04N_7 L04P_7 L05P_7 GND I/O I/O I/O L37N_0 VCCO_0 L03P_0 L07P_0 GND
48 voltage reference for bank 68 XC3S2000 ( )
N.C.: Unconnected pins for
VREF: User I/O or input
I/O I/O I/O L15P_0 L20P_0 L24P_0
GND
GND
I/O IO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L05P_0 VCCAUX L06N_7 L06P_7 L05N_7 L05N_0 VREF_0 L07N_0 VREF_0 L11P_0 L15N_0 L20N_0 L24N_0 L27P_0 L30P_0 I/O VCCO _0 I/O I/O I/O I/O I/O VCCO _0 L11N_0 L14P_0 L19P_0 L27N_0 L30N_0 I/O I/O I/O L14N_0 L19N_0 L23P_0 I/O L29P_0
I/O I/O I/O I/O I/O I/O L36N_0 VCCO_7 L08N_7 L08P_7 L07N_7 L07P_7 L09P_7
XC3S4000, XC3S5000 (633 max user I/O) I/O: Unrestricted, 549 general-purpose user I/O VREF: User I/O or input 48 voltage reference for bank
I/O I/O I/O I/O I/O I/O I/O I/O I/O L36P_0 L10P_7 L10P_0 L13N_7 L13P_7 L11N_7 L11P_7 L10N_7 VREF_7 L09N_7 I/O I/O I/O I/O VCCO_7 L15N_7 L15P_7 L14N_7 L14P_7 GND I/O I/O VCCAUX L19N_7 VREF_7 L19P_7 I/O
GND
GND
I/O I/O I/O I/O I/O I/O I/O VCCO_7 L16P_7 VCCO_0 L26P_0 L18P_0 L23N_0 VREF_0 L29N_0 VREF_7 L10N_0 L13N_0 GND I/O I/O I/O I/O L16N_7 L20P_7 L13P_0 L18N_0 I/O I/O L26N_0 I/O
GND
I/O I/O L17N_7 L17P_7
I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO_7 VCCINT VCCO_0 VCCO_0 VCCO_0 VCCINT L20N_7 L24N_7 L24P_7 L23N_7 L23P_7 L22N_7 L22P_7 L21N_7 L21P_7 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L49P_7 L25N_7 L25P_7 L46N_7 L46P_7 VCCO_7 VCCINT VCCINT VCCINT L27P_7 L28P_7 L27N_7 VREF_7 L26N_7 L26P_7 I/O I/O L31N_7 L31P_7 GND I/O I/O I/O VCCO_7 L50N_7 L50P_7 L49N_7 VCCO_7 I/O I/O I/O VCCO_7 VCCINT L29N_7 L29P_7 L28N_7 GND I/O I/O VCCO_7 VCCINT L32N_7 L32P_7 GND GND GND
0
N.C.: No unconnected pins in this package
M N P R T
All devices DUAL: Configuration pin, 12 then possible user I/O
GND
I/O I/O VCCAUX L34N_7 L34P_7
GND
I/O I/O L33N_7 L33P_7
GND
GND
GND
8
GCLK: User I/O or global clock buffer input DCI: User I/O or reference
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCINT L37P_7 L40N_7 VREF_7 L40P_7 L39N_7 L39P_7 L38N_7 L38P_7 L37N_7 VREF_7 L35N_7 L35P_7 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L52P_6 L52N_6 VCCINT L40P_6 L37P_6 L37N_6 VREF_6 L40N_6 L39P_6 L39N_6 L38P_6 L38N_6 GND I/O I/O L36P_6 L36N_6 VCCAUX GND I/O I/O L35P_6 L35N_6 GND
GND
GND
GND
GND
GND
GND
GND
GND
16 resistor input for bank 7 4
CONFIG: Dedicated configuration pins
U V
I/O I/O L34N_6 VCCO_6 VCCINT L34P_6 VREF_6 I/O VCCO_6 VCCINT L29P_6
GND
GND
GND
I/O I/O I/O I/O I/O VCCO_6 L33P_6 L33N_6 L32P_6 L32N_6 L31P_6
I/O I/O VCCO_6 L30P_6 L30N_6 I/O I/O L25P_6 L25N_6
GND
GND
GND
JTAG: Dedicated JTAG port pins VCCINT: Internal core
I/O W L28P_6
I/O I/O I/O I/O I/O I/O L28N_6 L27P_6 L27N_6 L31N_6 L26P_6 L26N_6
I/O VCCO_6 VCCINT VCCINT VCCINT L29N_6
GND
Y A A A B
I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO_6 VCCINT VCCO_5 VCCO_5 VCCO_5 VCCINT L24N_6 L45P_6 L45N_6 L24P_6 VREF_6 L20P_6 L22P_6 L22N_6 L21P_6 L21N_6 GND I/O I/O VCCAUX L19P_6 L19N_6 GND I/O I/O L17P_6 VREF_6 L17N_6 I/O CCO_6 V GND I/O I/O L16P_6 L20N_6 I/O I/O I/O I/O I/O L22P_5 L22N_5 L26P_5 I/O
Bank 6
32 voltage supply (+1.2V)
VCCO: Output voltage 80 supply for bank
I/O I/O I/O I/O VCCO_6 L15P_6 L15N_6 L14P_6 L14N_6
I/O I/O L16N_6 L08P_5
CCO_5 V
I/O I/O I/O I/O L29P_5 L17N_5 L23P_5 L26N_5 VREF_5 GND I/O L29N_5
I/O A L13P_6 C VREF_6
I/O I/O I/O I/O I/O I/O I/O I/O L36P_5 L13N_6 L11P_6 L11N_6 L10P_6 L10N_6 L09P_6 L08N_5
GND
I/O I/O I/O L17P_5 L18P_5 L23N_5
24 supply (+2.5V) 120
GND: Ground
VCCAUX: Auxiliary voltage
A D A E A F A G A H A J A K
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L36N_5 VCCO_5 V CCO_6 L09N_6 VCCO_5 L08P_6 L08N_6 L07P_6 L07N_6 L13P_5 L13N_5 L18N_5 L30P_5 L30N_5 VREF_6 L05P_5 GND I/O I/O VCCAUX I/O L06P_6 L06N_6 L05P_6 GND I/O I/O I/O I/O I/O I/O I/O I/O I/O L37P_5 L27N_5 L19P_5 L11N_5 L05N_5 L11P_5 VREF_5 L14P_5 VREF_5 L27P_5 VREF_5 GND I/O I/O I/O L14N_5 L19N_5 L24P_5 GND I/O I/O L31P_5 D5
I/O I/O I/O VCCO_6 L04P_6 L04N_6 L05N_6
I/O I/O I/O VCCO_5 L37N_5 L03N_5 L09P_5
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L38P_5 VCCAUX L31N_5 L03N_6 L03P_6 VREF_6 L02P_6 L02N_6 L03P_5 VCCAUX L06P_5 L09N_5 VCCAUX L15P_5 L20P_5 L24N_5 D4 I/O I/O L01P_6 L01N_6 VRN_6 VRP_6 GND GND M1 I/O I/O I/O IO I/O I/O I/O I/O I/O L38N_5 VCCO_5 VCCO_5 VCCO_5 L28P_5 L32P_5 VREF_5 L04P_5 L06N_5 L12P_5 L15N_5 L20N_5 D7 GCLK2 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L35P_5 L28N_5 L32N_5 L10P_5 L01P_5 L07P_5 VRN_5 L12N_5 L16P_5 L21P_5 L25P_5 D6 CS_B L02P_5 L04N_5 GCLK3 I/O I/O L01N_5 RDWR_B L02N_5 GND I/O L35N_5 I/O I/O L10N_5 L07N_5 VRP_5 GND I/O I/O I/O L16N_5 L21N_5 L25N_5 GND IO VREF_5
M0
GND
GND
M2
Bank 5
DS099-4_13a_121103
Figure 16: FG900 Package Footprint (top view)
88
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
16
I/O
17
GND
18
I/O L39N_1
19
20
Bank 1 21 22
GND
23
24
25
GND
26
27
28
TMS
29
GND
30
GND
I/O I/O L26N_1 L21N_1
I/O I/O I/O L15N_1 L11N_1 L07N_1
I/O I/O L01N_1 L03N_1 VRP_1
A B C D E F G H J K L M N P R T U V W Y A A A B A C A D A E A F A G A H A J A K Bank 2
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L39P_1 L01P_1 L17N_1 L32N_1 L26P_1 L21P_1 VREF_1 L15P_1 L11P_1 L07P_1 L04N_1 L03P_1 VRN_1 L28N_1 GCLK5 I/O I/O I/O I/O I/O I/O I/O I/O VCCO_1 VCCO_1 L10N_1 L06N_1 L32P_1 VCCO_1 L25N_1 L20N_1 L17P_1 GCLK4 L28P_1 VREF_1 VREF_1 L04P_1 I/O L02P_1
Right Half of Package (top view)
TCK
GND
GND
TDO
I/O I/O L01N_2 L01P_2 VRP_2 VRN_2
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L03N_2 L31N_1 VCCAUX L38N_1 L25P_1 L20P_1 VCCAUX L14N_1 L10P_1 L06P_1 VCCAUX L02N_1 L02N_2 L02P_2 VREF_2 L03P_2 VREF_1 I/O L31P_1 I/O GND I/O L38P_1 I/O I/O L24N_1 L19N_1 GND I/O I/O VCCO_1 L14P_1 L13P_1 I/O GND I/O L41N_2 VCCO_2 I/O I/O L04N_2 L04P_2 GND
I/O L27N_1
I/O
I/O I/O I/O I/O I/O I/O I/O L24P_1 L19P_1 L16N_1 L13N_1 L09N_1 L05N_1 L05P_1
I/O L41P_2 VCCAUX
I/O I/O L05N_2 L05P_2
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO_1 VCCO_2 VCCO_1 L30N_1 L27P_1 L23N_1 L18N_1 L16P_1 L09P_1 L08P_1 L08N_2 L06N_2 L06P_2 L07N_2 L07P_2 I/O L30P_1 GND I/O L37N_1 I/O I/O L23P_1 L18P_1 GND I/O I/O I/O I/O I/O I/O I/O I/O I/O L09N_2 L12N_1 L08N_1 L08P_2 VREF_2 L09P_2 L10N_2 L10P_2 L12N_2 L12P_2 I/O I/O L12P_1 L15N_2 VCCO_2 I/O L15P_2 GND I/O I/O I/O I/O I/O L13P_2 L13N_2 VREF_2 VCCO_2 L14N_2 L14P_2 GND I/O I/O VCCAUX L45N_2 L45P_2 GND
I/O IO I/O I/O L37P_1 VCCO_1 L29N_1 VREF_1 L22N_1 I/O I/O I/O I/O L40N_1 L40P_1 L29P_1 L22P_1 I/O
I/O I/O L46N_2
I/O I/O L16N_2 L16P_2
I/O I/O I/O VCCINT VCCO_1 VCCO_1 VCCO_1 VCCINT L46P_2 VCCO_2 L47N_2 L47P_2
I/O I/O I/O I/O I/O I/O L19N_2 L19P_2 L20N_2 L20P_2 L21N_2 L21P_2
GND
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L50N_2 L50P_2 VCCINT VCCINT VCCINT VCCO_2 L23N_2 L26N_2 L22N_2 L22P_2 VREF_2 L23P_2 L28N_2 L24N_2 L24P_2 GND GND I/O I/O I/O I/O I/O I/O I/O I/O VCCINT VCCO_2 L26P_2 L27N_2 L27P_2 VCCO_2 L28P_2 L29N_2 L29P_2 VCCO_2 L31N_2 L31P_2 VCCINT VCCO_2 I/O I/O L32N_2 L32P_2 GND I/O I/O L33N_2 L33P_2 GND I/O I/O VCCAUX L34N_2 L34P_2 VREF_2 GND
GND
GND
GND
GND
GND
GND
GND
GND
VCCINT
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L40P_2 L35N_2 L35P_2 L37N_2 L37P_2 L38N_2 L38P_2 L39N_2 L39P_2 L40N_2 VREF_2 I/O I/O I/O I/O I/O I/O L35P_3 L35N_3 L37P_3 L37N_3 L38P_3 L38N_3 GND I/O I/O L33P_3 L33N_3 GND I/O I/O I/O I/O L40N_3 L39P_3 L39N_3 L40P_3 VREF_3 I/O I/O VCCAUX L34P_3 VREF_3 L34N_3 GND
GND
GND
GND
GND
VCCINT
GND
GND
GND
I/O I/O VCCINT VCCO_3 L32P_3 L32N_3 VCCINT VCCO_3
GND
GND
GND
I/O I/O I/O I/O I/O I/O I/O I/O L50P_3 L50N_3 VCCO_3 VCCO_3 L27N_3 L28P_3 L28N_3 L29N_3 L31P_3 L31N_3 I/O L27P_3 I/O I/O I/O I/O L46P_3 L46N_3 L47P_3 L47N_3 I/O L29P_3 I/O I/O L48P_3 L48N_3 I/O I/O L26P_3 L26N_3
GND
VCCINT VCCINT VCCINT VCCO_3
VCCINT VCCO_4 VCCO_4 VCCO_4 VCCINT
I/O I/O I/O I/O I/O I/O I/O I/O I/O L23P_3 L20N_3 VCCO_3 L21P_3 L21N_3 L22P_3 L22N_3 VREF_3 L23N_3 L24P_3 L24N_3 GND I/O I/O L17P_3 VREF_3 L17N_3 I/O GND VCCAUX I/O I/O L19P_3 L19N_3 GND
I/O
I/O L26N_4
I/O
I/O I/O I/O I/O L18N_4 L13P_4 L20P_3 L16N_3
I/O I/O I/O I/O I/O VCCO_4 L26P_4 L13N_4 L29N_4 VREF_4 L23N_4 L18P_4 I/O L29P_4 GND I/O I/O I/O L23P_4 L19N_4 L14N_4 GND
I/O I/O L08N_4 L16P_3 VCCO_3
I/O L14P_3
I/O I/O I/O L14N_3 VCCO_3 L15P_3 L15N_3
I/O I/O I/O I/O I/O I/O I/O I/O I/O L13N_3 L08P_4 L04P_4 L09N_3 L10P_3 L10N_3 L11P_3 L11N_3 L13P_3 VREF_3
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L09P_3 L30N_4 L27N_4 VCCO_4 DIN L19P_4 L14P_4 L11N_4 VCCO_4 L04N_4 VREF_3 VCCO_3 L07P_3 L07N_3 L08P_3 L08N_3 D2 D0 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L34P_4 L34N_4 I/O GND VCCAUX L30P_4 L27P_4 L24N_4 L20N_4 L15N_4 L11P_4 L05N_4 L05N_3 L06P_3 L06N_3 D3 D1 I/O VREF_4 GND I/O I/O I/O L24P_4 L20P_4 L15P_4 I/O GND I/O I/O I/O L09N_4 L05P_4 VCCO_4 L03P_4 GND I/O I/O I/O VCCO_3 L05P_3 L04P_3 L04N_3 I/O I/O I/O I/O L02N_3 L02P_3 VREF_3 L03P_3 L03N_3 CCLK I/O I/O L01P_3 L01N_3 VRN_3 VRP_3 GND GND
I/O L31N_4 VCCAUX INIT_B
I/O I/O I/O I/O I/O I/O VCCAUX L06N_4 L35N_4 VCCAUX L21N_4 L16N_4 L09P_4 VREF_4 L03N_4
I/O I/O I/O I/O I/O I/O I/O I/O L31P_4 L35P_4 L33N_4 VCCO_4 I/O DOUT L28N_4 VCCO_4 L21P_4 L16P_4 L12N_4 VCCO_4 L06P_4 BUSY I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O L38N_4 L33P_4 L01N_4 L32N_4 L22N_4 L02N_4 VRP_4 L28P_4 L25N_4 VREF_4 L17N_4 L12P_4 L10N_4 L07N_4 GCLK1 I/O L32P_4 GCLK0 GND I/O I/O I/O L25P_4 L22P_4 L17P_4 GND I/O I/O I/O L38P_4 L10P_4 L07P_4 GND
DONE
I/O IO I/O L01P_4 L02P_4 VRN_ VREF_4 4
GND
GND
Bank 4
DS099-4_13b_121103
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
Bank 3
89
Spartan-3 FPGA Family: Pinout Descriptions
R
FG1156: 1156-lead Fine-pitch Ball Grid Array
The 1,156-lead fine-pitch ball grid array package, FG1156, supports two different Spartan-3 devices, namely the XC3S4000 and the XC3S5000. The XC3S4000, however, has fewer I/O pins, which consequently results in 73 unconnected pins on the FG1156 package, labeled as "N.C." In Table 40 and Figure 17, these unconnected pins are indicated with a black diamond symbol ( ). The XC3S5000 has a single unconnected package pin, ball AK31, which is also unconnected for the XC3S4000. All the package pins appear in Table 40 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier. If there is a difference between the XC3S4000 and XC3S5000 pinouts, then that difference is highlighted in Table 40. If the table entry is shaded grey, then there is an unconnected pin on the XC3S4000 that maps to a user-I/O pin on the XC3S5000. If the table entry is shaded tan, which only occurs on ball L29 in I/O Bank 2, then the unconnected pin on the XC3S4000 maps to a VREF-type pin on the XC3S5000. If the other VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S4000 to the same VREF_2 voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S4000 to the XC3S5000 FPGA without changing the printed circuit board. An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at http://www.xilinx.com/bvdocs/publications/s3_pin.zip.
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO IO IO IO IO IO/VREF_0 IO/VREF_0 IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L02N_0 IO_L02P_0 IO_L03N_0 IO_L03P_0 IO_L04N_0 IO_L04P_0 IO_L05N_0 IO_L05P_0/ VREF_0 IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L11N_0 IO_L11P_0 IO_L12N_0 IO_L12P_0 IO_L13N_0 IO_L13P_0 IO_L14N_0 IO_L14P_0 IO_L15N_0 IO_L15P_0 XC3S5000 Pin Name IO IO IO IO IO IO/VREF_0 IO/VREF_0 IO/VREF_0 IO/VREF_0 IO_L01N_0/ VRP_0 IO_L01P_0/ VRN_0 IO_L02N_0 IO_L02P_0 IO_L03N_0 IO_L03P_0 IO_L04N_0 IO_L04P_0 IO_L05N_0 IO_L05P_0/ VREF_0 IO_L06N_0 IO_L06P_0 IO_L07N_0 IO_L07P_0 IO_L08N_0 IO_L08P_0 IO_L09N_0 IO_L09P_0 IO_L10N_0 IO_L10P_0 IO_L11N_0 IO_L11P_0 IO_L12N_0 IO_L12P_0 IO_L13N_0 IO_L13P_0 IO_L14N_0 IO_L14P_0 IO_L15N_0 IO_L15P_0 FG1156 Pin Number K16 K17 L13 L16 L17 D5 E10 J14 L15 B3 A3 B4 A4 C5 B5 D6 C6 B6 A6 F7 E7 G9 F9 D9 C9 J10 H10 G10 F10 L12 K12 J12 H12 F12 E12 D12 C12 B12 A12
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type I/O I/O I/O I/O I/O VREF VREF VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
Pinout Table
Table 40: FG1156 Package Pinout
XC3S4000 Pin Name IO IO IO IO IO IO IO IO N.C. ( ) N.C. ( ) IO XC3S5000 Pin Name IO IO IO IO IO IO IO IO IO IO IO FG1156 Pin Number B9 E17 F6 F8 G12 H8 H9 J11 J9 K11 K13
0 Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 0 0 0 0 0 0 0 0 0 0 0 0 0
Bank 0 0 0 0 0 0 0 0 0 0 0
90
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L35N_0 IO_L35P_0 IO_L36N_0 IO_L36P_0 IO_L37N_0 IO_L37P_0 IO_L38N_0 IO_L38P_0 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO IO IO IO N.C. ( ) IO IO IO IO N.C. ( ) XC3S5000 Pin Name IO_L35N_0 IO_L35P_0 IO_L36N_0 IO_L36P_0 IO_L37N_0 IO_L37P_0 IO_L38N_0 IO_L38P_0 IO_L39N_0 IO_L39P_0 IO_L40N_0 IO_L40P_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO FG1156 Pin Number E8 D8 B8 A8 D10 C10 B10 A10 G11 F11 B11 A11 B13 C4 C8 D11 D16 F13 G8 H11 H15 M13 M14 M15 M16 B26 A18 C23 E21 E25 F18 F27 F29 H23 H26 J26 K19 L19 L20 L21 L23
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L16N_0 IO_L16P_0 IO_L17N_0 IO_L17P_0 IO_L18N_0 IO_L18P_0 IO_L19N_0 IO_L19P_0 IO_L20N_0 IO_L20P_0 IO_L21N_0 IO_L21P_0 IO_L22N_0 IO_L22P_0 IO_L23N_0 IO_L23P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L26N_0 IO_L26P_0/ VREF_0 IO_L27N_0 IO_L27P_0 IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) XC3S5000 Pin Name IO_L16N_0 IO_L16P_0 IO_L17N_0 IO_L17P_0 IO_L18N_0 IO_L18P_0 IO_L19N_0 IO_L19P_0 IO_L20N_0 IO_L20P_0 IO_L21N_0 IO_L21P_0 IO_L22N_0 IO_L22P_0 IO_L23N_0 IO_L23P_0 IO_L24N_0 IO_L24P_0 IO_L25N_0 IO_L25P_0 IO_L26N_0 IO_L26P_0/ VREF_0 IO_L27N_0 IO_L27P_0 IO_L28N_0 IO_L28P_0 IO_L29N_0 IO_L29P_0 IO_L30N_0 IO_L30P_0 IO_L31N_0 IO_L31P_0/ VREF_0 IO_L32N_0/ GCLK7 IO_L32P_0/ GCLK6 IO_L33N_0 IO_L33P_0 IO_L34N_0 IO_L34P_0 FG1156 Pin Number H13 G13 D13 C13 L14 K14 H14 G14 F14 E14 D14 C14 B14 A14 K15 J15 G15 F15 D15 C15 B15 A15 G16 F16 C16 B16 J17 H17 G17 F17 D17 C17 B17 A17 D7 C7 B7 A7
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF GCLK GCLK I/O I/O I/O I/O
Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
91
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO IO/VREF_1 IO/VREF_1 IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L02N_1 IO_L02P_1 IO_L03N_1 IO_L03P_1 IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1 IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L11N_1 IO_L11P_1 IO_L12N_1 IO_L12P_1 IO_L13N_1 IO_L13P_1 IO_L14N_1 IO_L14P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L17N_1/ VREF_1 XC3S5000 Pin Name IO IO/VREF_1 IO/VREF_1 IO/VREF_1 IO_L01N_1/ VRP_1 IO_L01P_1/ VRN_1 IO_L02N_1 IO_L02P_1 IO_L03N_1 IO_L03P_1 IO_L04N_1 IO_L04P_1 IO_L05N_1 IO_L05P_1 IO_L06N_1/ VREF_1 IO_L06P_1 IO_L07N_1 IO_L07P_1 IO_L08N_1 IO_L08P_1 IO_L09N_1 IO_L09P_1 IO_L10N_1/ VREF_1 IO_L10P_1 IO_L11N_1 IO_L11P_1 IO_L12N_1 IO_L12P_1 IO_L13N_1 IO_L13P_1 IO_L14N_1 IO_L14P_1 IO_L15N_1 IO_L15P_1 IO_L16N_1 IO_L16P_1 IO_L17N_1/ VREF_1 FG1156 Pin Number L24 D30 K21 L18 A32 B32 A31 B31 B30 C30 C29 D29 A29 B29 E28 F28 D27 E27 A27 B27 F26 G26 C26 D26 H25 J25 F25 G25 C25 D25 A25 B25 A24 B24 J23 K23 F23
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L17P_1 IO_L18N_1 IO_L18P_1 IO_L19N_1 IO_L19P_1 IO_L20N_1 IO_L20P_1 IO_L21N_1 IO_L21P_1 IO_L22N_1 IO_L22P_1 IO_L23N_1 IO_L23P_1 IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 IO_L26N_1 IO_L26P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) XC3S5000 Pin Name IO_L17P_1 IO_L18N_1 IO_L18P_1 IO_L19N_1 IO_L19P_1 IO_L20N_1 IO_L20P_1 IO_L21N_1 IO_L21P_1 IO_L22N_1 IO_L22P_1 IO_L23N_1 IO_L23P_1 IO_L24N_1 IO_L24P_1 IO_L25N_1 IO_L25P_1 IO_L26N_1 IO_L26P_1 IO_L27N_1 IO_L27P_1 IO_L28N_1 IO_L28P_1 IO_L29N_1 IO_L29P_1 IO_L30N_1 IO_L30P_1 IO_L31N_1/ VREF_1 IO_L31P_1 IO_L32N_1/ GCLK5 IO_L32P_1/ GCLK4 IO_L33N_1 IO_L33P_1 IO_L34N_1 IO_L34P_1 IO_L35N_1 IO_L35P_1 IO_L36N_1 IO_L36P_1 FG1156 Pin Number G23 D23 E23 A23 B23 K22 L22 G22 H22 C22 D22 H21 J21 F21 G21 C21 D21 A21 B21 F19 G19 B19 C19 J18 K18 G18 H18 D18 E18 B18 C18 C28 D28 A28 B28 J24 K24 F24 G24
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O VREF VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O GCLK GCLK I/O I/O I/O I/O I/O I/O I/O I/O
92
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L08N_2 IO_L08P_2 IO_L09N_2/ VREF_2 IO_L09P_2 IO_L10N_2 IO_L10P_2 IO_L11N_2 IO_L11P_2 IO_L12N_2 IO_L12P_2 IO_L13N_2 IO_L13P_2/ VREF_2 IO_L14N_2 IO_L14P_2 IO_L15N_2 IO_L15P_2 IO_L16N_2 IO_L16P_2 N.C. ( ) N.C. ( ) IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 IO_L28P_2 XC3S5000 Pin Name IO_L08N_2 IO_L08P_2 IO_L09N_2/ VREF_2 IO_L09P_2 IO_L10N_2 IO_L10P_2 IO_L11N_2 IO_L11P_2 IO_L12N_2 IO_L12P_2 IO_L13N_2 IO_L13P_2/ VREF_2 IO_L14N_2 IO_L14P_2 IO_L15N_2 IO_L15P_2 IO_L16N_2 IO_L16P_2 IO_L17N_2 IO_L17P_2/ VREF_2 IO_L19N_2 IO_L19P_2 IO_L20N_2 IO_L20P_2 IO_L21N_2 IO_L21P_2 IO_L22N_2 IO_L22P_2 IO_L23N_2/ VREF_2 IO_L23P_2 IO_L24N_2 IO_L24P_2 IO_L26N_2 IO_L26P_2 IO_L27N_2 IO_L27P_2 IO_L28N_2 IO_L28P_2 FG1156 Pin Number J28 J29 H31 J31 J32 J33 J27 K26 K27 K28 K29 K30 K31 K32 K33 K34 L25 L26 L28 L29 M29 M30 M31 M32 M26 N25 N27 N28 N31 N32 N24 P24 P29 P30 P31 P32 P33 P34
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L37N_1 IO_L37P_1 IO_L38N_1 IO_L38P_1 IO_L39N_1 IO_L39P_1 IO_L40N_1 IO_L40P_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO IO IO IO IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 XC3S5000 Pin Name IO_L37N_1 IO_L37P_1 IO_L38N_1 IO_L38P_1 IO_L39N_1 IO_L39P_1 IO_L40N_1 IO_L40P_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCO_1 IO IO IO IO IO_L01N_2/ VRP_2 IO_L01P_2/ VRN_2 IO_L02N_2 IO_L02P_2 IO_L03N_2/ VREF_2 IO_L03P_2 IO_L04N_2 IO_L04P_2 IO_L05N_2 IO_L05P_2 IO_L06N_2 IO_L06P_2 IO_L07N_2 IO_L07P_2 FG1156 Pin Number J20 K20 F20 G20 C20 D20 A20 B20 B22 C27 C31 D19 D24 F22 G27 H20 H24 M19 M20 M21 M22 G33 G34 U25 U26 C33 C34 D33 D34 E32 E33 F31 F32 G29 G30 H29 H30 H33 H34
Bank 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Type I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Type I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
93
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L29N_2 IO_L29P_2 IO_L30N_2 IO_L30P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L37N_2 IO_L37P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 IO_L41N_2 IO_L41P_2 N.C. ( ) N.C. ( ) IO_L45N_2 IO_L45P_2 IO_L46N_2 IO_L46P_2 IO_L47N_2 IO_L47P_2 IO_L48N_2 IO_L48P_2 N.C. ( ) N.C. ( ) IO_L50N_2 IO_L50P_2 N.C. ( ) N.C. ( ) XC3S5000 Pin Name IO_L29N_2 IO_L29P_2 IO_L30N_2 IO_L30P_2 IO_L31N_2 IO_L31P_2 IO_L32N_2 IO_L32P_2 IO_L33N_2 IO_L33P_2 IO_L34N_2/ VREF_2 IO_L34P_2 IO_L35N_2 IO_L35P_2 IO_L37N_2 IO_L37P_2 IO_L38N_2 IO_L38P_2 IO_L39N_2 IO_L39P_2 IO_L40N_2 IO_L40P_2/ VREF_2 IO_L41N_2 IO_L41P_2 IO_L42N_2 IO_L42P_2 IO_L45N_2 IO_L45P_2 IO_L46N_2 IO_L46P_2 IO_L47N_2 IO_L47P_2 IO_L48N_2 IO_L48P_2 IO_L49N_2 IO_L49P_2 IO_L50N_2 IO_L50P_2 IO_L51N_2 IO_L51P_2 FG1156 Pin Number R24 R25 R28 R29 R31 R32 R33 R34 R26 T25 T28 T29 T32 T33 U27 U28 U29 U30 U31 U32 U33 U34 F33 F34 G31 G32 L33 L34 M24 M25 M27 M28 M33 M34 P25 P26 P27 P28 T24 U24
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO IO IO IO IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 IO_L04N_3 IO_L04P_3 IO_L05N_3 IO_L05P_3 IO_L06N_3 IO_L06P_3 IO_L07N_3 IO_L07P_3 IO_L08N_3 IO_L08P_3 IO_L09N_3 IO_L09P_3/ VREF_3 IO_L10N_3 IO_L10P_3 IO_L11N_3 XC3S5000 Pin Name VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 VCCO_2 IO IO IO IO IO_L01N_3/ VRP_3 IO_L01P_3/ VRN_3 IO_L02N_3/ VREF_3 IO_L02P_3 IO_L03N_3 IO_L03P_3 IO_L04N_3 IO_L04P_3 IO_L05N_3 IO_L05P_3 IO_L06N_3 IO_L06P_3 IO_L07N_3 IO_L07P_3 IO_L08N_3 IO_L08P_3 IO_L09N_3 IO_L09P_3/ VREF_3 IO_L10N_3 IO_L10P_3 IO_L11N_3 FG1156 Pin Number D32 H28 H32 L27 L31 N23 N29 N33 P23 R23 R27 T23 T31 AH33 AH34 V25 V26 AM34 AM33 AL34 AL33 AK33 AK32 AJ32 AJ31 AJ34 AJ33 AH30 AH29 AG30 AG29 AG34 AG33 AF29 AF28 AF31 AG31 AF33
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
Bank 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Type VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O DCI DCI VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O
94
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3 IO_L35N_3 IO_L35P_3 IO_L37N_3 IO_L37P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L45N_3 IO_L45P_3 IO_L46N_3 IO_L46P_3 IO_L47N_3 IO_L47P_3 IO_L48N_3 IO_L48P_3 N.C. ( ) N.C. ( ) IO_L50N_3 IO_L50P_3 N.C. ( ) N.C. ( ) VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 XC3S5000 Pin Name IO_L33N_3 IO_L33P_3 IO_L34N_3 IO_L34P_3/ VREF_3 IO_L35N_3 IO_L35P_3 IO_L37N_3 IO_L37P_3 IO_L38N_3 IO_L38P_3 IO_L39N_3 IO_L39P_3 IO_L40N_3/ VREF_3 IO_L40P_3 IO_L41N_3 IO_L41P_3 IO_L44N_3 IO_L44P_3 IO_L45N_3 IO_L45P_3 IO_L46N_3 IO_L46P_3 IO_L47N_3 IO_L47P_3 IO_L48N_3 IO_L48P_3 IO_L49N_3 IO_L49P_3 IO_L50N_3 IO_L50P_3 IO_L51N_3 IO_L51P_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 FG1156 Pin Number W25 Y26 W29 W28 W33 W32 V28 V27 V30 V29 V32 V31 V34 V33 AH32 AH31 AD29 AD28 AC34 AC33 AB28 AB27 AB32 AB31 AA24 AB24 AA26 AA25 Y25 Y24 V24 W24 AA23 AB23 AB29 AB33 AD27 AD31 AG28 AG32
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L11P_3 IO_L12N_3 IO_L12P_3 IO_L13N_3/ VREF_3 IO_L13P_3 IO_L14N_3 IO_L14P_3 IO_L15N_3 IO_L15P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L30N_3 IO_L30P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 XC3S5000 Pin Name IO_L11P_3 IO_L12N_3 IO_L12P_3 IO_L13N_3/ VREF_3 IO_L13P_3 IO_L14N_3 IO_L14P_3 IO_L15N_3 IO_L15P_3 IO_L16N_3 IO_L16P_3 IO_L17N_3 IO_L17P_3/ VREF_3 IO_L19N_3 IO_L19P_3 IO_L20N_3 IO_L20P_3 IO_L21N_3 IO_L21P_3 IO_L22N_3 IO_L22P_3 IO_L23N_3 IO_L23P_3/ VREF_3 IO_L24N_3 IO_L24P_3 IO_L26N_3 IO_L26P_3 IO_L27N_3 IO_L27P_3 IO_L28N_3 IO_L28P_3 IO_L29N_3 IO_L29P_3 IO_L30N_3 IO_L30P_3 IO_L31N_3 IO_L31P_3 IO_L32N_3 IO_L32P_3 FG1156 Pin Number AF32 AE26 AF27 AE28 AE27 AE30 AE29 AE32 AE31 AE34 AE33 AD26 AD25 AD34 AD33 AC25 AC24 AC28 AC27 AC30 AC29 AC32 AC31 AB25 AC26 AA28 AA27 AA30 AA29 AA32 AA31 AA34 AA33 Y29 Y28 Y32 Y31 Y34 Y33
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Type I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
Bank 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Type I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
95
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO IO IO N.C. ( ) IO N.C. ( ) IO IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L02N_4 IO_L02P_4 IO_L03N_4 IO_L03P_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 XC3S5000 Pin Name VCCO_3 VCCO_3 VCCO_3 VCCO_3 VCCO_3 IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO/VREF_4 IO/VREF_4 IO/VREF_4 IO/VREF_4 IO_L01N_4/ VRP_4 IO_L01P_4/ VRN_4 IO_L02N_4 IO_L02P_4 IO_L03N_4 IO_L03P_4 IO_L04N_4 IO_L04P_4 IO_L05N_4 IO_L05P_4 IO_L06N_4/ VREF_4 IO_L06P_4 IO_L07N_4 IO_L07P_4 FG1156 Pin Number AL32 W23 W31 Y23 Y27 AD18 AD19 AD20 AD22 AE18 AE19 AE22 AE24 AF24 AF26 AG26 AG27 AJ27 AJ29 AK25 AN26 AF21 AH23 AK18 AL30 AN32 AP32 AN31 AP31 AM30 AN30 AN27 AP27 AH26 AJ26 AL26 AM26 AF25 AG25
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L11N_4 IO_L11P_4 IO_L12N_4 IO_L12P_4 IO_L13N_4 IO_L13P_4 IO_L14N_4 IO_L14P_4 IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L17N_4 IO_L17P_4 IO_L18N_4 IO_L18P_4 IO_L19N_4 IO_L19P_4 IO_L20N_4 IO_L20P_4 IO_L21N_4 IO_L21P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L23N_4 IO_L23P_4 IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L26N_4 IO_L26P_4/ VREF_4 IO_L27N_4/ DIN/D0 XC3S5000 Pin Name IO_L08N_4 IO_L08P_4 IO_L09N_4 IO_L09P_4 IO_L10N_4 IO_L10P_4 IO_L11N_4 IO_L11P_4 IO_L12N_4 IO_L12P_4 IO_L13N_4 IO_L13P_4 IO_L14N_4 IO_L14P_4 IO_L15N_4 IO_L15P_4 IO_L16N_4 IO_L16P_4 IO_L17N_4 IO_L17P_4 IO_L18N_4 IO_L18P_4 IO_L19N_4 IO_L19P_4 IO_L20N_4 IO_L20P_4 IO_L21N_4 IO_L21P_4 IO_L22N_4/ VREF_4 IO_L22P_4 IO_L23N_4 IO_L23P_4 IO_L24N_4 IO_L24P_4 IO_L25N_4 IO_L25P_4 IO_L26N_4 IO_L26P_4/ VREF_4 IO_L27N_4/ DIN/D0 FG1156 Pin Number AH25 AJ25 AL25 AM25 AN25 AP25 AD23 AE23 AF23 AG23 AJ23 AK23 AL23 AM23 AN23 AP23 AG22 AH22 AL22 AM22 AD21 AE21 AG21 AH21 AJ21 AK21 AL21 AM21 AN21 AP21 AE20 AF20 AH20 AJ20 AL20 AM20 AN20 AP20 AH19
Bank 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type VCCO VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF VREF VREF VREF DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF DUAL
96
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO N.C. ( ) IO IO IO IO IO IO N.C. ( ) IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L02N_5 IO_L02P_5 IO_L03N_5 IO_L03P_5 IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 XC3S5000 Pin Name VCCO_4 VCCO_4 VCCO_4 VCCO_4 IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L02N_5 IO_L02P_5 IO_L03N_5 IO_L03P_5 IO_L04N_5 IO_L04P_5 IO_L05N_5 IO_L05P_5 IO_L06N_5 IO_L06P_5 IO_L07N_5 IO_L07P_5 IO_L08N_5 IO_L08P_5 FG1156 Pin Number AL24 AM27 AM31 AN22 AD11 AD12 AD14 AD15 AD16 AD17 AE14 AE16 AF9 AG9 AG12 AJ6 AJ17 AK10 AK14 AM12 AN9 AJ8 AL5 AP17 AP3 AN3 AP4 AN4 AN5 AM5 AM6 AL6 AP6 AN6 AK7 AJ7 AG10 AF10 AJ10 AH10
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 IO_L33N_4 IO_L33P_4 IO_L34N_4 IO_L34P_4 IO_L35N_4 IO_L35P_4 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L38N_4 IO_L38P_4 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 XC3S5000 Pin Name IO_L27P_4/ D1 IO_L28N_4 IO_L28P_4 IO_L29N_4 IO_L29P_4 IO_L30N_4/ D2 IO_L30P_4/ D3 IO_L31N_4/ INIT_B IO_L31P_4/ DOUT/BUSY IO_L32N_4/ GCLK1 IO_L32P_4/ GCLK0 IO_L33N_4 IO_L33P_4 IO_L34N_4 IO_L34P_4 IO_L35N_4 IO_L35P_4 IO_L36N_4 IO_L36P_4 IO_L37N_4 IO_L37P_4 IO_L38N_4 IO_L38P_4 IO_L39N_4 IO_L39P_4 IO_L40N_4 IO_L40P_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 VCCO_4 FG1156 Pin Number AJ19 AM19 AN19 AF18 AG18 AH18 AJ18 AL18 AM18 AN18 AP18 AL29 AM29 AN29 AP29 AJ28 AK28 AL28 AM28 AN28 AP28 AK27 AL27 AH24 AJ24 AN24 AP24 AC19 AC20 AC21 AC22 AG20 AG24 AH27 AJ22 AL19
Bank 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Type DUAL I/O I/O I/O I/O DUAL DUAL DUAL DUAL GCLK GCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO
Bank 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Type VCCO VCCO VCCO VCCO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF VREF VREF DUAL DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
97
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L11N_5/ VREF_5 IO_L11P_5 IO_L12N_5 IO_L12P_5 IO_L13N_5 IO_L13P_5 IO_L14N_5 IO_L14P_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L17N_5 IO_L17P_5 IO_L18N_5 IO_L18P_5 IO_L19N_5 IO_L19P_5/ VREF_5 IO_L20N_5 IO_L20P_5 IO_L21N_5 IO_L21P_5 IO_L22N_5 IO_L22P_5 IO_L23N_5 IO_L23P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L26N_5 IO_L26P_5 IO_L27N_5/ VREF_5 XC3S5000 Pin Name IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L11N_5/ VREF_5 IO_L11P_5 IO_L12N_5 IO_L12P_5 IO_L13N_5 IO_L13P_5 IO_L14N_5 IO_L14P_5 IO_L15N_5 IO_L15P_5 IO_L16N_5 IO_L16P_5 IO_L17N_5 IO_L17P_5 IO_L18N_5 IO_L18P_5 IO_L19N_5 IO_L19P_5/ VREF_5 IO_L20N_5 IO_L20P_5 IO_L21N_5 IO_L21P_5 IO_L22N_5 IO_L22P_5 IO_L23N_5 IO_L23P_5 IO_L24N_5 IO_L24P_5 IO_L25N_5 IO_L25P_5 IO_L26N_5 IO_L26P_5 IO_L27N_5/ VREF_5 FG1156 Pin Number AM10 AL10 AP10 AN10 AP11 AN11 AF12 AE12 AJ12 AH12 AL12 AK12 AP12 AN12 AE13 AD13 AH13 AG13 AM13 AL13 AG14 AF14 AJ14 AH14 AM14 AL14 AP14 AN14 AF15 AE15 AJ15 AH15 AM15 AL15 AP15 AN15 AJ16
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L35N_5 IO_L35P_5 IO_L36N_5 IO_L36P_5 IO_L37N_5 IO_L37P_5 IO_L38N_5 IO_L38P_5 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 XC3S5000 Pin Name IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L29N_5 IO_L29P_5/ VREF_5 IO_L30N_5 IO_L30P_5 IO_L31N_5/ D4 IO_L31P_5/ D5 IO_L32N_5/ GCLK3 IO_L32P_5/ GCLK2 IO_L33N_5 IO_L33P_5 IO_L34N_5 IO_L34P_5 IO_L35N_5 IO_L35P_5 IO_L36N_5 IO_L36P_5 IO_L37N_5 IO_L37P_5 IO_L38N_5 IO_L38P_5 IO_L39N_5 IO_L39P_5 IO_L40N_5 IO_L40P_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCO_5 FG1156 Pin Number AH16 AN16 AM16 AF17 AE17 AH17 AG17 AL17 AK17 AN17 AM17 AM7 AL7 AP7 AN7 AL8 AK8 AP8 AN8 AJ9 AH9 AM9 AL9 AF11 AE11 AJ11 AH11 AC13 AC14 AC15 AC16 AG11 AG15 AH8 AJ13 AL11
Bank 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Type I/O I/O DCI
Bank 5 5 5
Type I/O DUAL DUAL I/O VREF I/O I/O DUAL DUAL GCLK GCLK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO
DCI 5 VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
98
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L15P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L25N_6 IO_L25P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L30N_6 IO_L30P_6 IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 XC3S5000 Pin Name IO_L15P_6 IO_L16N_6 IO_L16P_6 IO_L17N_6 IO_L17P_6/ VREF_6 IO_L19N_6 IO_L19P_6 IO_L20N_6 IO_L20P_6 IO_L21N_6 IO_L21P_6 IO_L22N_6 IO_L22P_6 IO_L23N_6 IO_L23P_6 IO_L24N_6/ VREF_6 IO_L24P_6 IO_L25N_6 IO_L25P_6 IO_L26N_6 IO_L26P_6 IO_L27N_6 IO_L27P_6 IO_L28N_6 IO_L28P_6 IO_L29N_6 IO_L29P_6 IO_L30N_6 IO_L30P_6 IO_L31N_6 IO_L31P_6 IO_L32N_6 IO_L32P_6 IO_L33N_6 IO_L33P_6 IO_L34N_6/ VREF_6 IO_L34P_6 IO_L35N_6 IO_L35P_6 FG1156 Pin Number AE3 AE2 AE1 AD10 AD9 AD2 AD1 AC11 AC10 AC8 AC7 AC6 AC5 AC2 AC1 AC9 AB10 AB8 AB7 AB4 AB3 AB11 AA11 AA8 AA7 AA6 AA5 AA4 AA3 AA2 AA1 Y11 Y10 Y4 Y3 Y2 Y1 Y9 W10
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO IO IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6 IO_L03P_6 IO_L04N_6 IO_L04P_6 IO_L05N_6 IO_L05P_6 IO_L06N_6 IO_L06P_6 IO_L07N_6 IO_L07P_6 IO_L08N_6 IO_L08P_6 IO_L09N_6/ VREF_6 IO_L09P_6 IO_L10N_6 IO_L10P_6 IO_L11N_6 IO_L11P_6 IO_L12N_6 IO_L12P_6 IO_L13N_6 IO_L13P_6/ VREF_6 IO_L14N_6 IO_L14P_6 IO_L15N_6 XC3S5000 Pin Name VCCO_5 VCCO_5 VCCO_5 VCCO_5 IO IO IO IO IO_L01N_6/ VRP_6 IO_L01P_6/ VRN_6 IO_L02N_6 IO_L02P_6 IO_L03N_6/ VREF_6 IO_L03P_6 IO_L04N_6 IO_L04P_6 IO_L05N_6 IO_L05P_6 IO_L06N_6 IO_L06P_6 IO_L07N_6 IO_L07P_6 IO_L08N_6 IO_L08P_6 IO_L09N_6/ VREF_6 IO_L09P_6 IO_L10N_6 IO_L10P_6 IO_L11N_6 IO_L11P_6 IO_L12N_6 IO_L12P_6 IO_L13N_6 IO_L13P_6/ VREF_6 IO_L14N_6 IO_L14P_6 IO_L15N_6 FG1156 Pin Number AL16 AM4 AM8 AN13 AH1 AH2 V9 V10 AM2 AM1 AL2 AL1 AK3 AK2 AJ4 AJ3 AJ2 AJ1 AH6 AH5 AG6 AG5 AG2 AG1 AF7 AF6 AG4 AF4 AF3 AF2 AF8 AE9 AE8 AE7 AE6 AE5 AE4
Bank 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Type VCCO VCCO VCCO VCCO I/O I/O I/O I/O DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Type I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
99
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L36N_6 IO_L36P_6 IO_L37N_6 IO_L37P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L45N_6 IO_L45P_6 N.C. ( ) N.C. ( ) IO_L48N_6 IO_L48P_6 N.C. ( ) N.C. ( ) IO_L52N_6 IO_L52P_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO IO IO XC3S5000 Pin Name IO_L36N_6 IO_L36P_6 IO_L37N_6 IO_L37P_6 IO_L38N_6 IO_L38P_6 IO_L39N_6 IO_L39P_6 IO_L40N_6 IO_L40P_6/ VREF_6 IO_L41N_6 IO_L41P_6 IO_L44N_6 IO_L44P_6 IO_L45N_6 IO_L45P_6 IO_L46N_6 IO_L46P_6 IO_L48N_6 IO_L48P_6 IO_L49N_6 IO_L49P_6 IO_L52N_6 IO_L52P_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 VCCO_6 IO IO IO FG1156 Pin Number W7 W6 W3 W2 V6 V5 V4 V3 V2 V1 AH4 AH3 AD7 AD6 AC4 AC3 AA10 AA9 Y7 Y6 W11 V11 V8 V7 AA12 AB12 AB2 AB6 AD4 AD8 AG3 AG7 AL3 W12 W4 Y12 Y8 G1 G2 U10
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L04N_7 IO_L04P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L10N_7 IO_L10P_7/ VREF_7 IO_L11N_7 IO_L11P_7 IO_L12N_7 IO_L12P_7 IO_L13N_7 IO_L13P_7 IO_L14N_7 IO_L14P_7 IO_L15N_7 IO_L15P_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 XC3S5000 Pin Name IO IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L04N_7 IO_L04P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L10N_7 IO_L10P_7/ VREF_7 IO_L11N_7 IO_L11P_7 IO_L12N_7 IO_L12P_7 IO_L13N_7 IO_L13P_7 IO_L14N_7 IO_L14P_7 IO_L15N_7 IO_L15P_7 IO_L16N_7 IO_L16P_7/ VREF_7 IO_L17N_7 IO_L17P_7 IO_L19N_7/ VREF_7 IO_L19P_7 FG1156 Pin Number U9 C1 C2 D1 D2 E2 E3 F3 F4 F1 F2 G5 G6 H5 H6 H1 H2 J6 J7 J4 H4 J2 J3 K9 J8 K7 K8 K5 K6 K3 K4 K1 K2 L9 L10 L1 L2
Bank 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO I/O I/O I/O
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type I/O DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O VREF I/O
100
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L40P_7 N.C. ( ) N.C. ( ) N.C. ( ) N.C. ( ) IO_L45N_7 IO_L45P_7 IO_L46N_7 IO_L46P_7 N.C. ( ) N.C. ( ) IO_L49N_7 IO_L49P_7 IO_L50N_7 IO_L50P_7 N.C. ( ) N.C. ( ) VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND XC3S5000 Pin Name IO_L40P_7 IO_L41N_7 IO_L41P_7 IO_L44N_7 IO_L44P_7 IO_L45N_7 IO_L45P_7 IO_L46N_7 IO_L46P_7 IO_L47N_7 IO_L47P_7 IO_L49N_7 IO_L49P_7 IO_L50N_7 IO_L50P_7 IO_L51N_7 IO_L51P_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 VCCO_7 GND GND GND GND GND GND GND GND GND GND GND FG1156 Pin Number U2 G3 G4 L6 L7 M1 M2 N7 N8 P9 P10 P1 P2 R10 R11 U11 T11 D3 H3 H7 L4 L8 N12 N2 N6 P12 R12 R8 T12 T4 A1 A13 A16 A19 A2 A22 A26 A30 A33 A34 A5
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L25N_7 IO_L25P_7 IO_L26N_7 IO_L26P_7 IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L30N_7 IO_L30P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L37N_7 IO_L37P_7/ VREF_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 XC3S5000 Pin Name IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L25N_7 IO_L25P_7 IO_L26N_7 IO_L26P_7 IO_L27N_7 IO_L27P_7/ VREF_7 IO_L28N_7 IO_L28P_7 IO_L29N_7 IO_L29P_7 IO_L30N_7 IO_L30P_7 IO_L31N_7 IO_L31P_7 IO_L32N_7 IO_L32P_7 IO_L33N_7 IO_L33P_7 IO_L34N_7 IO_L34P_7 IO_L35N_7 IO_L35P_7 IO_L37N_7 IO_L37P_7/ VREF_7 IO_L38N_7 IO_L38P_7 IO_L39N_7 IO_L39P_7 IO_L40N_7/ VREF_7 FG1156 Pin Number M10 M11 M7 M8 M5 M6 M3 M4 N10 M9 N3 N4 P11 N11 P7 P8 P5 P6 P3 P4 R6 R7 R3 R4 R1 R2 T10 R9 T6 T7 T2 T3 U7 U8 U5 U6 U3 U4 U1
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O I/O I/O I/O VREF
Bank 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO VCCO GND GND GND GND GND GND GND GND GND GND GND
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
101
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG1156 Pin Number A9 AA14 AA15 AA16 AA17 AA18 AA19 AA20 AA21 AB1 AB17 AB18 AB26 AB30 AB34 AB5 AB9 AD3 AD32 AE10 AE25 AF1 AF13 AF16 AF19 AF22 AF30 AF34 AF5 AH28 AH7 AK1 AK13 AK16 AK19 AK22 AK26 AK30 AK34 AK5 AK9
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG1156 Pin Number AM11 AM24 AM3 AM32 AN1 AN2 AN33 AN34 AP1 AP13 AP16 AP19 AP2 AP22 AP26 AP30 AP33 AP34 AP5 AP9 B1 B2 B33 B34 C11 C24 C3 C32 E1 E13 E16 E19 E22 E26 E30 E34 E5 E9 G28 G7 J1
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
102
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG1156 Pin Number T19 T20 T21 T26 T30 T34 T5 T9 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 W1 W14 W15 W16 W17 W18 W19 W20 W21 W26 W30 W34 W5
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND FG1156 Pin Number J13 J16 J19 J22 J30 J34 J5 K10 K25 L3 L32 N1 N17 N18 N26 N30 N34 N5 N9 P14 P15 P16 P17 P18 P19 P20 P21 R14 R15 R16 R17 R18 R19 R20 R21 T1 T14 T15 T16 T17 T18
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
103
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name GND GND GND GND GND GND GND GND GND N.C. ( ) VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX XC3S5000 Pin Name GND GND GND GND GND GND GND GND GND N.C. ( ) VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX FG1156 Pin Number W9 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 AK31 AD30 AD5 AG16 AG19 AJ30 AJ5 AK11 AK15 AK20 AK24 AK29 AK6 E11 E15 E20 E24 E29 E6 F30 F5 H16 H19 L30 L5 R30 R5 T27 T8 W27 W8 Y30
R
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT XC3S5000 Pin Name VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT FG1156 Pin Number Y5 AA13 AA22 AB13 AB14 AB15 AB16 AB19 AB20 AB21 AB22 AC12 AC17 AC18 AC23 M12 M17 M18 M23 N13 N14 N15 N16 N19 N20 N21 N22 P13 P22 R13 R22 T13 T22 U12 U23 V12 V23 W13 W22 Y13 Y22
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type GND GND GND GND GND GND GND GND GND N.C. VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
Bank N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
104
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name XC3S5000 Pin Name TDI TDO TMS FG1156 Pin Number E4 E31 H27
Table 40: FG1156 Package Pinout (Continued)
XC3S4000 Pin Name XC3S5000 Pin Name CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK FG1156 Pin Number AL31 AD24 L11 AL4 AK4 AG8 D4 D31
Bank
Type CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG
Bank
Type JTAG JTAG JTAG
VCCAUX CCLK VCCAUX DONE VCCAUX HSWAP_EN VCCAUX M0 VCCAUX M1 VCCAUX M2 VCCAUX PROG_B VCCAUX TCK
VCCAUX TDI VCCAUX TDO VCCAUX TMS
User I/Os by Bank
Table 41 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 in the FG1156 package. Similarly, Table 42 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S5000 in the FG1156 package.
Table 41: User I/Os Per Bank for XC3S4000 in FG1156 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 90 90 88 88 90 90 88 88 All Possible I/O Pins by Type I/O 79 79 80 79 73 73 79 79 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 7 7 6 7 7 7 7 7 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
Right
Bottom
Left
Table 42: User I/Os Per Bank for XC3S5000 in FG1156 Package I/O Bank 0 1 2 3 4 5 6 7 Maximum I/O 100 100 96 96 100 100 96 96 All Possible I/O Pins by Type I/O 89 89 87 87 83 83 87 87 DUAL 0 0 0 0 6 6 0 0 DCI 2 2 2 2 2 2 2 2 VREF 7 7 7 7 7 7 7 7 GCLK 2 2 0 0 2 2 0 0
Package Edge Top
Right
Bottom
Left
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
105
Spartan-3 FPGA Family: Pinout Descriptions
R
FG1156 Footprint
Top Left Corner of Package (top view)
XC3S4000 (712 max. user I/O) I/O: Unrestricted, 621 general-purpose user I/O XC3S5000 (784 max. user I/O) I/O: Unrestricted, 692 general-purpose user I/O
55
VREF: User I/O or input voltage reference for bank
73
N.C.: Unconnected pins for XC3S4000 ( )
56
VREF: User I/O or input voltage reference for bank
1
N.C.: Unconnected pins for XC3S5000 ( )
Figure 17: FG1156 Package Footprint (top view)
1 A B C D E F G H J Bank 7 K L M N P R T U
GND
2
GND
3
I/O L01P_0 VRN_0 I/O L01N_0 VRP_0
4
I/O L02P_0
5
GND
6
I/O L05P_0 VREF_0 I/O L05N_0
7
I/O L34P_0
8
I/O L36P_0
9
GND
Bank 0 10 11
I/O L38P_0 I/O L40P_0
12
I/O L15P_0
13
GND
14
I/O L22P_0
15
I/O L26P_0 VREF_0 I/O L26N_0
16
GND
17
I/O L32P_0 GCLK6 I/O L32N_0 GCLK7 I/O L31P_0 VREF_0 I/O L31N_0
GND
GND
I/O L02N_0
I/O L03P_0
I/O L34N_0
I/O L36N_0
I/O
I/O L38N_0
I/O L40N_0
I/O L15N_0
VCCO_0
I/O L22N_0
I/O L28P_0
I/O L01N_7 VRP_7 I/O L02N_7
I/O L01P_7 VRN_7 I/O L02P_7 I/O L03N_7 VREF_7 I/O L05P_7
GND
VCCO_0
I/O L03N_0
I/O L04P_0
I/O L33P_0
VCCO_0
I/O L08P_0
I/O L37P_0
GND
I/O L14P_0
I/O L17P_0
I/O L21P_0
I/O L25P_0
I/O L28N_0
VCCO_7 PROG_B
IO VREF_0
I/O L04N_0
I/O L33N_0
I/O L35P_0
I/O L08N_0
I/O L37N_0
VCCO_0
I/O L14N_0
I/O L17N_0
I/O L21N_0
I/O L25N_0
VCCO_0
GND
I/O L03P_7
TDI
GND
VCCAUX
I/O L06P_0
I/O L35N_0
GND
IO VCCAUX VREF_0 I/O L39P_0
I/O L13P_0
GND
I/O L20P_0
VCCAUX
GND
I/O
I/O L05N_7
I/O L04N_7 I/O L41N_7
I/O L04P_7 I/O L41P_7
VCCAUX
I/O
I/O L06N_0
I/O
I/O L07P_0
I/O L10P_0
I/O L13N_0
VCCO_0
I/O L20N_0
I/O L24P_0
I/O L27P_0
I/O L30P_0
I/O
I/O
I/O L06N_7
I/O L06P_7
GND
VCCO_0
I/O L07N_0
I/O L10N_0
I/O L39N_0
I/O
I/O L16P_0
I/O L19P_0
I/O L24N_0
I/O L27N_0
I/O L30N_0
I/O L08N_7
I/O L08P_7
VCCO_7
I/O L10P_7 VREF_7 I/O L10N_7
I/O L07N_7
I/O L07P_7
VCCO_7
I/O
I/O
I/O L09P_0
VCCO_0
I/O L12P_0
I/O L16N_0
I/O L19N_0
VCCO_0 VCCAUX
I/O L29P_0
GND
I/O L11N_7 I/O L16P_7 VREF_7 I/O L19P_7
I/O L11P_7
GND
I/O L09N_7
I/O L09P_7
I/O L12P_7
I/O
I/O L09N_0
I/O
I/O L12N_0
GND
IO VREF_0
I/O L23P_0
GND
I/O L29N_0
I/O L16N_7 I/O L19N_7 VREF_7 I/O L45N_7
I/O L15N_7
I/O L15P_7
I/O L14N_7
I/O L14P_7 I/O L44N_7
I/O L13N_7 I/O L44P_7
I/O L13P_7
I/O L12N_7
GND
I/O
I/O L11P_0
I/O
I/O L18P_0
I/O L23N_0
I/O
I/O
GND
VCCO_7 VCCAUX
VCCO_7
I/O L17N_7
I/O L17P_7
HSWAP_ EN
I/O L11N_0
I/O
I/O L18N_0
IO VREF_0
I/O
I/O
I/O L45P_7
I/O L23N_7
I/O L23P_7
I/O L22N_7
I/O L22P_7
I/O L21N_7
I/O L21P_7
I/O L24P_7
I/O L20N_7
I/O L20P_7
VCCINT
VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCINT
GND
VCCO_7
I/O L25N_7
I/O L25P_7
GND
VCCO_7
I/O L46N_7
I/O L46P_7 I/O L27P_7 VREF_7
GND I/O L47N_7
I/O L24N_7 I/O L47P_7
I/O L26P_7
VCCO_7 VCCINT
VCCINT
VCCINT
VCCINT
GND
I/O L49N_7
I/O L49P_7
I/O L29N_7
I/O L29P_7
I/O L28N_7
I/O L28P_7
I/O L27N_7
I/O L26N_7
VCCO_7 VCCINT
GND
GND
GND
GND
I/O L32N_7
I/O L32P_7
I/O L31N_7
I/O L31P_7
VCCAUX
I/O L30N_7
I/O L30P_7
VCCO_7
I/O L33P_7
I/O L50N_7
I/O L50P_7 I/O L51P_7
VCCO_7 VCCINT
GND
GND
GND
GND
GND
I/O L35N_7
I/O L35P_7
VCCO_7
GND
I/O L34N_7
I/O L34P_7
VCCAUX
GND
I/O L33N_7
VCCO_7 VCCINT
GND
GND
GND
GND
I/O L40N_7 VREF_7
I/O L40P_7
I/O L39N_7
I/O L39P_7
I/O L38N_7
I/O L38P_7
I/O L37N_7
I/O L37P_7 VREF_7
I/O
I/O
I/O L51N_7
VCCINT
GND
GND
GND
GND
GND
DS099-4_14a_072903
106
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
All Devices
Top Right Corner of Package (top view)
16
DCI: User I/O or reference resistor input for bank JTAG: Dedicated JTAG port pins VCCAUX: Auxiliary voltage supply (+2.5V)
12
DUAL: Configuration pin, then possible user I/O CONFIG: Dedicated configuration pins VCCINT: Internal core voltage supply (+1.2V)
8
GCLK: User I/O or global clock buffer input VCCO: Output voltage supply for bank GND: Ground
7
4
104
40
32
184
18
I/O
19
GND
20
I/O L40N_1
21
I/O L26N_1
22
GND
23
I/O L19N_1
24
I/O L15N_1
Bank 1 25 26
I/O L14N_1 GND
27
I/O L08N_1
28
I/O L34N_1
29
I/O L05N_1
30
GND
31
I/O L02N_1
32
I/O L01N_1 VRP_1 I/O L01P_1 VRN_1
33
GND
34
GND
A B C D E F G H J K L M N P R T U Bank 2
107
I/O L32N_1 GCLK5 I/O L32P_1 GCLK4 I/O L31N_1 VREF_1 I/O L31P_1
I/O L28N_1
I/O L40P_1
I/O L26P_1
VCCO_1
I/O L19P_1
I/O L15P_1
I/O L14P_1
I/O
I/O L08P_1
I/O L34P_1
I/O L05P_1
I/O L03N_1
I/O L02P_1
GND
GND
I/O L28P_1
I/O L39N_1
I/O L25N_1
I/O L22N_1
I/O
GND
I/O L13N_1
I/O L10N_1 VREF_1 I/O L10P_1
VCCO_1
I/O L33N_1
I/O L04N_1
I/O L03P_1
VCCO_1
GND
I/O L01N_2 VRP_2 I/O L02N_2
I/O L01P_2 VRN_2 I/O L02P_2
VCCO_1
I/O L39P_1
I/O L25P_1
I/O L22P_1
I/O L18N_1
VCCO_1
I/O L13P_1
I/O L07N_1
I/O L33P_1
I/O L04P_1
IO VREF_1
TCK
VCCO_2
GND
VCCAUX
I/O
GND
I/O L18P_1 I/O L17N_1 VREF_1 I/O L17P_1
VCCAUX I/O L36N_1
I/O
GND
I/O L07P_1
I/O L06N_1 VCCAUX VREF_1 I/O L06P_1
GND
TDO
I/O L03N_2 VREF_2 I/O L04P_2 I/O L42P_2
I/O L03P_2
GND
I/O
I/O L27N_1
I/O L38N_1
I/O L24N_1
VCCO_1
I/O L12N_1
I/O L09N_1
I/O
I/O
VCCAUX
I/O L04N_2 I/O L42N_2
I/O L41N_2
I/O L41P_2
I/O L30N_1
I/O L27P_1
I/O L38P_1
I/O L24P_1
I/O L21N_1
I/O L36P_1
I/O L12P_1
I/O L09P_1
VCCO_1
GND
I/O L05N_2
I/O L05P_2
I/O
I/O
I/O L30P_1
VCCAUX VCCO_1
I/O L23N_1
I/O L21P_1
I/O
VCCO_1 I/O L35N_1
I/O L11N_1
I/O
TMS
VCCO_2
I/O L06N_2
I/O L06P_2
I/O L09N_2 VREF_2 I/O L09P_2
VCCO_2
I/O L07N_2
I/O L07P_2
I/O L29N_1
GND
I/O L37N_1
I/O L23P_1
GND
I/O L16N_1
I/O L11P_1
I/O
I/O L11N_2
I/O L08N_2
I/O L08P_2
GND
I/O L10N_2
I/O L10P_2
GND
I/O L29P_1
I/O
I/O L37P_1
IO VREF_1
I/O L20N_1
I/O L16P_1 I/O
I/O L35P_1
GND
I/O L11P_2
I/O L12N_2
I/O L12P_2 I/O L17N_2
I/O L13N_2
I/O L13P_2 VREF_2
I/O L14N_2
I/O L14P_2
I/O L15N_2
I/O L15P_2
IO VREF_1
I/O
I/O
I/O
I/O L20P_1
I/O
I/O L16N_2
I/O L16P_2
VCCO_2
I/O L17P_2 VREF_2 VCCAUX VCCO_2
GND
I/O L45N_2
I/O L45P_2
VCCINT
VCCO_1 VCCO_1 VCCO_1 VCCO_1 VCCINT
I/O L46N_2
I/O L46P_2
I/O L21N_2
I/O L47N_2
I/O L47P_2
I/O L19N_2
I/O L19P_2
I/O L20N_2 I/O L23N_2 VREF_2 I/O L27N_2
I/O L20P_2
I/O L48N_2
I/O L48P_2
GND
VCCINT VCCINT
VCCINT
VCCINT
VCCO_2
I/O L24N_2
I/O L21P_2 I/O L49N_2
GND I/O L49P_2
I/O L22N_2
I/O L22P_2
VCCO_2
GND
I/O L23P_2
VCCO_2
GND
GND
GND
GND
GND
VCCINT
VCCO_2
I/O L24P_2
I/O L50N_2
I/O L50P_2
I/O L26N_2
I/O L26P_2
I/O L27P_2
I/O L28N_2
I/O L28P_2
GND
GND
GND
GND
VCCINT
VCCO_2
I/O L29N_2 I/O L51N_2
I/O L29P_2
I/O L33N_2
VCCO_2
I/O L30N_2 I/O L34N_2 VREF_2 I/O L37P_2
I/O L30P_2
VCCAUX
I/O L31N_2
I/O L31P_2
I/O L32N_2
I/O L32P_2
GND
GND
GND
GND
VCCINT
VCCO_2
I/O L33P_2
GND
VCCAUX
I/O L34P_2
GND
VCCO_2
I/O L35N_2
I/O L35P_2
GND
GND
GND
GND
GND
GND
VCCINT
I/O L51P_2
I/O
I/O
I/O L37N_2
I/O L38N_2
I/O L38P_2
I/O L39N_2
I/O L39P_2
I/O L40N_2
I/O L40P_2 VREF_2
DS099-4_14b_072903
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
Spartan-3 FPGA Family: Pinout Descriptions
R
1 V W Y A A A B A C A D Bank 6 A E A F A G A H A J A K A L A M A N A P
I/O L40P_6 VREF_6
2
I/O L40N_6
3
I/O L39P_6
4
I/O L39N_6
5
I/O L38P_6
6
I/O L38N_6
7
I/O L52P_6
8
I/O L52N_6
9
I/O
10
I/O
11
I/O L49P_6
12
VCCINT
13
GND
14
GND
15
GND
16
GND
17
GND
GND
I/O L37P_6 I/O L34N_6 VREF_6 I/O L31N_6
I/O L37N_6
VCCO_6
GND
I/O L36P_6
I/O L36N_6
VCCAUX
GND
I/O L35P_6
I/O L49N_6
VCCO_6 VCCINT
GND
GND
GND
GND
I/O L34P_6
I/O L33P_6
I/O L33N_6
VCCAUX
I/O L48P_6
I/O L48N_6
VCCO_6
I/O L35N_6 I/O L46P_6
I/O L32P_6 I/O L46N_6
I/O L32N_6
VCCO_6 VCCINT
GND
GND
GND
GND
I/O L31P_6
I/O L30P_6
I/O L30N_6
I/O L29P_6
I/O L29N_6
I/O L28P_6
I/O L28N_6
I/O L27P_6
VCCO_6 VCCINT
GND
GND
GND
GND
GND
VCCO_6
I/O L26P_6
I/O L26N_6
GND
VCCO_6
I/O L25P_6
I/O L25N_6
GND
I/O L24P_6
I/O L27N_6
VCCO_6 VCCINT
VCCINT
VCCINT
VCCINT
GND
I/O L23P_6
I/O L23N_6
I/O L45P_6
I/O L45N_6
I/O L22P_6
I/O L22N_6 I/O L44P_6
I/O L21P_6 I/O L44N_6
I/O L21N_6
I/O L24N_6 VREF_6 I/O L17P_6 VREF_6 I/O L12P_6 I/O
I/O L20P_6
I/O L20N_6
VCCINT
VCCO_5 VCCO_5 VCCO_5 VCCO_5 VCCINT
I/O L19P_6
I/O L19N_6
GND
VCCO_6 VCCAUX
VCCO_6
I/O L17N_6
I/O I/O L39P_5
I/O
I/O L16P_5
I/O
I/O
I/O
I/O
I/O L16P_6
I/O L16N_6
I/O L15P_6
I/O L15N_6
I/O L14P_6
I/O L14N_6
I/O L13P_6 VREF_6 I/O L09N_6 VREF_6
I/O L13N_6
GND
I/O L12P_5
I/O L16N_5
I/O
I/O L23P_5
I/O
I/O L29P_5 VREF_5 I/O L29N_5
GND
I/O L11P_6
I/O L11N_6
I/O L10P_6
GND
I/O L09P_6
I/O L12N_6
I/O L07P_5
I/O L39N_5
I/O L12N_5
GND
I/O L19P_5 VREF_5 I/O L19N_5
I/O L23N_5
GND
I/O L08P_6
I/O L08N_6
VCCO_6 I/O L41P_6
I/O L10N_6 I/O L41N_6
I/O L07P_6
I/O L07N_6
VCCO_6
M2
I/O
I/O L07N_5
VCCO_5 I/O L40P_5
I/O
I/O L17P_5
VCCO_5 VCCAUX
I/O L30P_5
I/O
I/O
I/O L06P_6
I/O L06N_6
GND
VCCO_5
I/O L37P_5
I/O L08P_5
I/O L13P_5
I/O L17N_5
I/O L20P_5
I/O L24P_5
I/O L27P_5 I/O L27N_5 VREF_5
I/O L30N_5
I/O L05P_6
I/O L05N_6
I/O L04P_6 I/O L03N_6 VREF_6
I/O L04N_6
VCCAUX
I/O
I/O L06P_5
IO VREF_5
I/O L37N_5
I/O L08N_5
I/O L40N_5
I/O L13N_5
VCCO_5
I/O L20N_5
I/O L24N_5
I/O
GND
I/O L03P_6
M1
GND
VCCAUX
I/O L06N_5 I/O L33P_5
I/O L35P_5
GND
I/O
VCCAUX
I/O L14P_5
GND
I/O
VCCAUX
GND
I/O L31P_5 D5 I/O L31N_5 D4 I/O L32P_5 GCLK2 I/O L32N_5 GCLK3 IO VREF_5
I/O L02P_6 I/O L01P_6 VRN_6
I/O L02N_6 I/O L01N_6 VRP_6
VCCO_6
M0
IO VREF_5
I/O L04P_5
I/O L35N_5
I/O L38P_5
I/O L09P_5
VCCO_5
I/O L14N_5
I/O L18P_5
I/O L21P_5
I/O L25P_5
VCCO_5
GND
VCCO_5
I/O L03P_5
I/O L04N_5
I/O L33N_5
VCCO_5
I/O L38N_5
I/O L09N_5 I/O L10P_5 VRN_5 I/O L10N_5 VRP_5
GND
I/O
I/O L18N_5
I/O L21N_5
I/O L25N_5
I/O L28P_5 D7 I/O L28N_5 D6
GND
GND
I/O L01P_5 CS_B I/O L01N_5 RDWR_B
I/O L02P_5
I/O L03N_5
I/O L05P_5
I/O L34P_5
I/O L36P_5
I/O
I/O L11P_5 I/O L11N_5 VREF_5
I/O L15P_5
VCCO_5
I/O L22P_5
I/O L26P_5
GND
GND
I/O L02N_5
GND
I/O L05N_5
I/O L34N_5
I/O L36N_5
GND
I/O L15N_5
GND
I/O L22N_5
I/O L26N_5
GND
Bank 5
DS099-4_14c_072503
Bottom Left Corner of Package (top view)
108
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
18
GND
19
GND
20
GND
21
GND
22
GND
23
VCCINT
24
I/O L51N_3
25
I/O
26
I/O
27
I/O L37P_3
28
I/O L37N_3 I/O L34P_3 VREF_3 I/O L30P_3
29
I/O L38P_3
30
I/O L38N_3
31
I/O L39P_3
32
I/O L39N_3
33
I/O L40P_3
34
I/O L40N_3 VREF_3
V W Y A A A B A C A D A E A F A G A H A J A K A L A M A N A P Bank 3
109
GND
GND
GND
GND
VCCINT
VCCO_3
I/O L51P_3
I/O L33N_3
GND
VCCAUX
I/O L34N_3
GND
VCCO_3
I/O L35P_3
I/O L35N_3
GND
GND
GND
GND
GND
VCCINT
VCCO_3
I/O L50P_3
I/O L50N_3 I/O L49P_3
I/O L33P_3 I/O L49N_3
VCCO_3
I/O L30N_3
VCCAUX
I/O L31P_3
I/O L31N_3
I/O L32P_3
I/O L32N_3
GND
GND
GND
GND
VCCINT
VCCO_3
I/O L48N_3
I/O L26P_3
I/O L26N_3
I/O L27P_3
I/O L27N_3
I/O L28P_3
I/O L28N_3
I/O L29P_3
I/O L29N_3
GND
VCCINT VCCINT
VCCINT
VCCINT
VCCO_3
I/O L48P_3
I/O L24N_3
GND
I/O L46P_3
I/O L46N_3
VCCO_3
GND
I/O L47P_3 I/O L23P_3 VREF_3
I/O L47N_3
VCCO_3
GND
VCCINT
VCCO_4 VCCO_4 VCCO_4 VCCO_4
VCCINT
I/O L20P_3
I/O L20N_3 I/O L17P_3 VREF_3
I/O L24P_3
I/O L21P_3
I/O L21N_3 I/O L44P_3
I/O L22P_3 I/O L44N_3
I/O L22N_3
I/O L23N_3
I/O L45P_3
I/O L45N_3
I/O
I/O
I/O
I/O L18N_4
I/O
I/O L11N_4
DONE
I/O L17N_3
VCCO_3
VCCAUX VCCO_3
GND
I/O L19P_3
I/O L19N_3
I/O
I/O
I/O L23N_4
I/O L18P_4
I/O
I/O L11P_4
I/O
GND
I/O L12N_3 I/O
I/O L13P_3
I/O L13N_3 VREF_3 I/O L09P_3 VREF_3
I/O L14P_3
I/O L14N_3
I/O L15P_3
I/O L15N_3
I/O L16P_3
I/O L16N_3
I/O L29N_4
GND
I/O L23P_4
IO VREF_4
GND
I/O L12N_4
I/O
I/O L07N_4
I/O L12P_3
I/O L09N_3
GND
I/O L10N_3
I/O L11P_3
I/O L11N_3
GND
I/O L29P_4 I/O L30N_4 D2 I/O L30P_4 D3 IO VREF_4 I/O L31N_4 INIT_B I/O L31P_4 DOUT BUSY I/O L32N_4 GCLK1 I/O L32P_4 GCLK0
VCCAUX VCCO_4 I/O L27N_4 DIN D0 I/O L27P_4 D1
I/O L19N_4
I/O L16N_4
I/O L12P_4
VCCO_4 I/O L39N_4
I/O L07P_4
I/O
I/O
VCCO_3
I/O L07P_3
I/O L07N_3
I/O L10P_3 I/O L41P_3
VCCO_3 I/O L41N_3
I/O L08P_3
I/O L08N_3
I/O L24N_4
I/O L19P_4
I/O L16P_4
IO VREF_4
I/O L08N_4
I/O L05N_4
VCCO_4
GND
I/O L06P_3
I/O L06N_3
I/O
I/O
I/O L24P_4
I/O L20N_4
VCCO_4
I/O L13N_4
I/O L39P_4
I/O L08P_4
I/O L05P_4
I/O
I/O L35N_4
I/O
VCCAUX
I/O L04P_3 N.C.
I/O L04N_3
I/O L05P_3
I/O L05N_3
GND
VCCAUX
I/O L20P_4
GND
I/O L13P_4
VCCAUX
I/O
GND
I/O L38N_4
I/O L35P_4 I/O L36N_4
VCCAUX
GND
I/O L03P_3
I/O L03N_3
GND
VCCO_4
I/O L25N_4
I/O L21N_4
I/O L17N_4
I/O L14N_4
VCCO_4
I/O L09N_4
I/O L06N_4 VREF_4 I/O L06P_4
I/O L38P_4
I/O L33N_4
IO VREF_4
CCLK
VCCO_3
I/O L02P_3 I/O L01P_3 VRN_3
I/O L02N_3 VREF_3 I/O L01N_3 VRP_3
I/O L28N_4
I/O L25P_4
I/O L21P_4 I/O L22N_4 VREF_4 I/O L22P_4
I/O L17P_4
I/O L14P_4
GND I/O L40N_4
I/O L09P_4
VCCO_4
I/O L36P_4
I/O L33P_4
I/O L03N_4
VCCO_4
GND
I/O L28P_4
I/O L26N_4 I/O L26P_4 VREF_4
VCCO_4
I/O L15N_4
I/O L10N_4
I/O
I/O L04N_4
I/O L37N_4
I/O L34N_4
I/O L03P_4
I/O L02N_4
I/O L01N_4 VRP_4 I/O L01P_4 VRN_4
GND
GND
GND
GND
I/O L15P_4
I/O L40P_4
I/O L10P_4
GND
I/O L04P_4
I/O L37P_4
I/O L34P_4
GND
I/O L02P_4
GND
GND
Bank 4
DS099-4_14d_072903
Bottom Right Corner of Package (top view)
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
Spartan-3 FPGA Family: Pinout Descriptions
R
Revision History
Date 04/03/03 04/21/03 Version No. 1.0 1.1 Initial Xilinx release. Added information on the VQ100 package footprint, including a complete pinout table (Table 17) and footprint diagram (Figure 8). Updated Table 16 with final I/O counts for the VQ100 package. Also added final differential I/O pair counts for the TQ144 package. Added clarifying comments to HSWAP_EN pin description on page 13. Updated the footprint diagram for the FG900 package shown in Figure 16a and Figure 16b. Some thick lines separating I/O banks were incorrect. Made cosmetic changes to Figure 1, Figure 3, and Figure 4. Updated Xilinx hypertext links. Added XC3S200 and XC3S400 to Pin Name column in Table 21. 05/12/03 07/11/03 1.1.1 1.1.2 AM32 pin was missing GND label in FG1156 package diagram (Figure 17). Corrected misspellings of GCLK in Table 1 and Table 2. Changed CMOS25 to LVCMOS25 in Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in Table 40, key, and package drawing. Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair names. The affected balls on the FG1156 package include G1, G2, G33, G34, U9, U10, U25, U26, V9, V10, V25, V26, AH1, AH2, AH33, AH34. The number of LVDS pairs is unaffected. Modified affected balls and re-sorted rows in Table 40. Updated affected balls in Figure 17. Also updated ASCII and Excel electronic versions of FG1156 pinout. Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 11. Added note that TDO is a totem-pole output in Table 9. Some pins had incorrect bank designations and were improperly sorted in Table 23. No pin names or functions changed. Renamed DCI_IN to DCI and added black diamond to N.C. pins in Table 23. In Figure 11, removed some extraneous text from pin 106 and corrected spelling of pins 45, 48, and 81. Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array). Made cosmetic changes to the TQ144 footprint (Figure 10), the PQ208 footprint (Figure 11), the FG676 footprint (Figure 15), and the FG900 footprint (Figure 16). Clarified wording in Precautions When Using the JTAG Port in 3.3V Environments section. Clarified wording in Using JTAG Port After Configuration section. In Table 12, reduced package height for FG320 and increased maximum I/O values for the FG676, FG900, and FG1156 packages. Added information on lead-free (Pb-free) package options to the Package Overview section plus Table 12 and Table 14. Clarified the VRN_# reference resistor requirements for I/O standards that use single termination as described in the DCI Termination Types section and in Figure 3b. Graduated from Advance Product Specification to Product Specification. Removed XC3S2000 references from FG1156: 1156-lead Fine-pitch Ball Grid Array. Added XC3S50 in CP132 package option. Added XC3S2000 in FG456 package option. Added XC3S4000 in FG676 package option. Added Selecting the Right Package Option section. Modified or added Table 12, Table 14, Table 15, Table 16, Table 19, Table 20, Table 30, Table 32, Table 33, Table 36, Figure 9, and Figure 15. Description
07/29/03
1.2
08/19/03 10/09/03
1.2.1 1.2.2
12/17/03
1.3
02/27/04
1.4
07/13/04
1.5
08/24/04 01/17/05
1.5.1 1.6
110
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification
R
Spartan-3 FPGA Family: Pinout Descriptions
The Spartan-3 Family Data Sheet
DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1) DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2) DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3) DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)
DS099-4 (v1.6) January 17, 2005 Product Specification
www.xilinx.com
111
Spartan-3 FPGA Family: Pinout Descriptions
R
112
www.xilinx.com
DS099-4 (v1.6) January 17, 2005 Product Specification


▲Up To Search▲   

 
Price & Availability of XC3S1000-5TQG144C

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X